People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Guedes, Alexandra
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Highly Efficient and Magnetically Recyclable Non-Noble Metal Fly Ash-Based Catalysts for 4-Nitrophenol Reductioncitations
- 2024Graphitization: Microstructural and microtextural transformations of residual char from international coal combustion ashcitations
- 2024Graphitization: Microstructural and microtextural transformations of residual char from international coal combustion ashcitations
- 2023FoodSmarTag: An innovative dynamic labeling system based on pyranoflavylium-based colorimetric films for real-time monitoring of food freshnesscitations
- 2021Graphene@Metal Sulfide/Oxide Nanocomposites as Novel Photo-Fenton-like Catalysts for 4-Nitrophenol Degradationcitations
- 2020Hydrothermal Carbon/Carbon Nanotube Composites as Electrocatalysts for the Oxygen Reduction Reactioncitations
- 2018Electrochemical genoassays on gold-coated magnetic nanoparticles to quantify genetically modified organisms (GMOs) in food and feed as GMO percentagecitations
- 2018Photochromic polypropylene fibers based on UV-responsive silica@phosphomolybdate nanoparticles through melt spinning technologycitations
- 2018Petrographic and SEM/EDS characterization of bottom ash fractions obtained using magnetic separation equipment
- 2018Heteroatom-Doped Carbon Nanomaterials as Metal-Free Catalysts for the Reduction of 4-Nitrophenolcitations
- 2016Characterization of bottom ash of Pliocene lignite as ceramic composites raw material by petrographic, SEM/EDS and Raman microspectroscopical methodscitations
- 2014Tailored design of CoxMn1-xFe2O4 nanoferrites: a new route for dual control of size and magnetic propertiescitations
- 2014Gold nanoparticles decorated on Bingel-thiol functionalized multiwall carbon nanotubes as an efficient and robust catalystcitations
- 2012Multianalytical approaches to the characterisation of minerals associated with coals and the diagnosis of their potential risk by using combined instrumental microspectroscopic techniques and thermodynamic speciationcitations
- 2012Superparamagnetic MFe2O4 (M = Fe, Co, Mn) Nanoparticles: Tuning the Particle Size and Magnetic Properties through a Novel One-Step Coprecipitation Routecitations
Places of action
Organizations | Location | People |
---|
article
Petrographic and SEM/EDS characterization of bottom ash fractions obtained using magnetic separation equipment
Abstract
The combustion of coal generates coal combustion products (CCPs) such as boiler slag, fly ash and bottom ash that may be used in construction, manufacturing, environmental remediation, and other industries. However, these CCPs are may be in part or globally landfilled due to environmental and economic factors. The bottom ash landfilled at Ceplea Valley (Gorj county, Romania) is a matter of serious environmental concern, and its utilization may be based on the fractionation of this material since its global utilization was not possible due to the Romanian regulation. Therefore, this study aims to demonstrate that the sequential utilization of magnetic separation equipment may provide bottom ash fractions with different types and volumes volume of Fe-bearing morphotypes. For this purpose, one composite sample representative of the landfill was successively fractionated using a ferrite hand magnet, an Nd hand magnet, and a Sterns separator at 10500 Gauss and 18000 Gauss. The global sample and the magnetic fractions were then petrographically characterized via reflected light microscopy using oil immersion objectives and via scanning electron microscopy with X-ray microanalysis (SEM/EDS). As a result of the utilization of these equipment’s the petrographic results show that the Fe-rich morphotypes were almost all collected in the first step of the magnetic separation, partially baked clay is more concentrated in the intermediated steps of the process, whereas the char and the quartz concentration was strongly increased in the remaining sample. The SEM/EDS results show that after the first magnetic separation process the aluminosilicate glass and partially baked clay morphotypes only contain residual amounts of Fe. Therefore, a magnetic separation process via ferrite magnet only is enough to remove the majority of the iron-rich particles from the bottom ash landfilled at Ceplea Valley. However, a further separation step with a Nd magnet or a magnetic separator at 10-11 MGauss is needed to remove the particles with minor amounts of Fe.