Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bendjemil, Badis

  • Google
  • 8
  • 28
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2023Synthesis of TiC(1-x)–ZrCx (x=0.2) composite by FAST-SPS-FCT technology, effect of SWCNTs and nano-WC additions on structural properties: Application for ballistic protectioncitations
  • 2020Study of the Nanocomposite Mo2C(1-x)-TiC(x)-SWCNTs by Field Actived Sparck Plasma Sintering Process’citations
  • 2020Study of the Nanocomposite cBN/TiC-SWCNTs by Field Actived Sparck Plasma Sintering Processcitations
  • 2020‘Study of the High Performance Ceramic-Matrix Composites (CMC’s) byCombustion in the TiO2-Al-C System’citations
  • 2020‘Study of the Nanocomposite cBN/TiC-SWCNTs by Field Actived Sparck Plasma Sintering Process’citations
  • 2019Carbon Nanostructures in Cancer Diagnosis and Therapycitations
  • 2014Crystallization Kinetics and Magnetic Properties of Fe40Ni40B20 Amorphous Ribbon2citations
  • 2012Crystallization Behavior of Fe50−xCr15Mo14C15B6Mx (x = 0, 2 and M=Y, Gd) Bulk Metallic Glasses and Ribbons by in situ High Temperature X-Ray Diffraction3citations

Places of action

Chart of shared publication
Houivet, David
5 / 15 shared
Bernard, Frédéric
1 / 15 shared
Arian, Mustapha
1 / 1 shared
Kouahla, Ilyas
1 / 1 shared
Mouyane, Mohamed
5 / 10 shared
Bernard, Jérôme
5 / 11 shared
Noudem, Jacques
2 / 16 shared
Khaoula, Safi
1 / 1 shared
Vrel, Dominique
1 / 10 shared
Nodem, Jacques
1 / 1 shared
Guhel, Yannick
1 / 3 shared
Reboul, Jean Michel
1 / 1 shared
Guel, Yannick
3 / 3 shared
Noudem, Jacques G.
2 / 4 shared
Reboul, Jean-Michel
1 / 4 shared
Pichler, Thomas
1 / 32 shared
Knupfer, Martin
1 / 13 shared
Cleymand, Franck
1 / 15 shared
Fink, Jörg
1 / 1 shared
Vinai, Franco
1 / 17 shared
Bougdira, Jamal
1 / 8 shared
Ferrara, Enzo
1 / 6 shared
Chakri, Nasr Eddine
1 / 1 shared
Belbah, Ahmed
1 / 1 shared
Bougdira, Jamel
1 / 1 shared
Baricco, Marcello
1 / 39 shared
Piccin, Rafael
1 / 1 shared
Bouchareb, Abderrezak
1 / 1 shared
Chart of publication period
2023
2020
2019
2014
2012

Co-Authors (by relevance)

  • Houivet, David
  • Bernard, Frédéric
  • Arian, Mustapha
  • Kouahla, Ilyas
  • Mouyane, Mohamed
  • Bernard, Jérôme
  • Noudem, Jacques
  • Khaoula, Safi
  • Vrel, Dominique
  • Nodem, Jacques
  • Guhel, Yannick
  • Reboul, Jean Michel
  • Guel, Yannick
  • Noudem, Jacques G.
  • Reboul, Jean-Michel
  • Pichler, Thomas
  • Knupfer, Martin
  • Cleymand, Franck
  • Fink, Jörg
  • Vinai, Franco
  • Bougdira, Jamal
  • Ferrara, Enzo
  • Chakri, Nasr Eddine
  • Belbah, Ahmed
  • Bougdira, Jamel
  • Baricco, Marcello
  • Piccin, Rafael
  • Bouchareb, Abderrezak
OrganizationsLocationPeople

article

Carbon Nanostructures in Cancer Diagnosis and Therapy

  • Bendjemil, Badis
  • Pichler, Thomas
  • Knupfer, Martin
  • Cleymand, Franck
  • Fink, Jörg
Abstract

Duringthe past years, carbon nanotubes (CNTs) have attracted considerable interest sincetheir first discovery. great progress has been made in the field of nanomaterials given their great potential in biomedical applications. Carbon nanotubes (CNTs), due to their unique physicochemical properties, have become a popular tool in cancer diagnosis and therapy. They are considered one of the most promising nanomaterials with the capability of both detectingthecancerouscellsanddeliveringdrugsorsmall therapeuticmoleculestothesecellsBecauseofthe unique structure, extremely high specific surface area to-volume ratio enables them to use in an intense real time applicationssuchasdetectionandtreatmentofcancerouscells,nervousdisorders,tissuerepair.andexcellent electrical and mechanical properties carbon nanotubes composed of excellent mechanical strength, electrical and thermalconductivitiesmakesthemasuitablesubstancetowarddevelopingmedicaldevices.,CNTshavebeen exploredinalmosteverysinglecancertreatmentmodality,includingdrugdeliverywithsmallnanomolecules, lymphatic targeted chemotherapy, thermal therapy, photodynamic therapy, and gene therapy and demonstrate a greatpromiseintheiruseintargeteddrugdeliverysystems,diagnostictechniquesandinbio-analytical applications. Majority of the biomedical applications of CNTs must be used after successful functionalization for morepotentialapplicationsthanpristineCNTs.ThereareseveralapproachestomodifypristineCNTsto potentiallyactive.CNTspoisedintothehumanlifeandexploitedinmedicalcontext.Herein,wereviewedthe followingtopics(i)FunctionalizationofCNTs(ii)CNTsinrealtimeapplicationssuchasdrugdelivery,gene therapy, biosensors and bio imaging; (iii) CNTs 3D printed scaffolds for medicine and (iv) Biocompatability and Biodegradability.Single-walledcarbonnanotubes(SWCNTs)weresynthesizedusingthehigh-pressurecarbon monoxide disproportionation process (HiPCO). The SWCNT diameter, diameter distribution and yield can be varied dependingontheprocessparameters.TheobtainedHiPCOproductpresentanironnanoparticleencapsulated heteronanocarbon(core-shellnanoparticles)atlowpressure(1bar)afterremovingofironmetal catalyst nanoparticle and amorphous carbon by acid immersion and oxidation. The resultingtherapeutic molecule in the form of core-shell nanoparticles and single walled carbon nanotubes after functionalization by filling of iron can beuseastherapeuticnanomaterialsinnanomedicineindiagnosisandtreatmentofcancertumor.Thispaper describesthesynthesismethodandroleofmultifunctionalnanoparticleindiagnosisandtreatmentofcancer. Therefore, the aim of this review is to provide basic information on nanoparticles, describe previously developed methods to functionalize nanoparticles and discuss theirpotential applications innanobiomedical and mention thetherapeuticnanoparticlelargescaleproductionandcommercializationchallenges.Inthefinalpartofthe review, emphasis is given on the pharmacokinetic aspects of carbon nanotubes includingadministration routes, absorption mechanisms, distribution and elimination of carbon nanotubes based systems. Lastly, a comprehensive account aboutthe potential biomedical applications hasbeen givenfollowed by insightsinto the future carbon nanotubes from synthesis to in vivo biomedical applications.

Topics
  • nanoparticle
  • impedance spectroscopy
  • surface
  • amorphous
  • Carbon
  • nanotube
  • strength
  • iron
  • functionalization