People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Marengo, Marco
University of Pavia
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024FLEXIBLE POLYMERIC PULSATING HEAT PIPES: FABRICATION TECHNIQUES AND THERMAL PERFORMANCE INVESTIGATION
- 2024FLEXIBLE POLYMERIC PULSATING HEAT PIPES: FABRICATION TECHNIQUES AND THERMAL PERFORMANCE INVESTIGATION
- 2024A novel fabrication method for polymeric flat plate pulsating heat pipe via additive manufacturingcitations
- 2024A novel fabrication method for polymeric flat plate pulsating heat pipe via additive manufacturingcitations
- 2024Pulsating heat pipe performance enhancement through porous metallic surfaces produced via physical dealloyingcitations
- 2024Pulsating heat pipe performance enhancement through porous metallic surfaces produced via physical dealloyingcitations
- 2023Physical dealloying towards pulsating heat pipes performance enhancement
- 2023Physical dealloying towards pulsating heat pipes performance enhancement
- 2022Imaging X-ray Polarimetry Explorer: prelaunchcitations
- 2022The Imaging X-Ray Polarimetry Explorer (IXPE): Pre-Launchcitations
- 2021The Imaging X-Ray Polarimetry Explorer (IXPE): technical overview IVcitations
- 2019Towards a durable polymeric internal coating for diabatic sections in wickless heat pipescitations
- 2019Towards a durable polymeric internal coating for diabatic sections in wickless heat pipescitations
- 2019A study of the effect of nanoparticle concentration on the characteristics of nanofluid sprayscitations
- 2015Two-component droplet wall-film interaction
- 2012Single drop impacts of complex fluids: a review
- 2009Advanced design of a "low-cost" loop heat pipecitations
- 2006Effect of wall effusivity on thermally induced secondary atomization of single drop impacting onto a tilted surface
- 2006Effect of wall effusivity on termally induced secondary atomisation of single drop impacting onto a tilted surface
- 2006Metodo e apparato per lo stampaggio a caldo di prodotti in materiale termoplastico
- 2006Secondary atomisation of drop impactions onto heated surfaces
- 2005Single and multiple drop impact onto heated surfaces
- 2001Outcomes from a drop impact on solid surfaces
Places of action
Organizations | Location | People |
---|
document
Two-component droplet wall-film interaction
Abstract
<p>The study of single droplet impact onto thin films of a different liquid (two-component droplet wall-film interaction) has a great number of industrial applications like combustion processes, spray freeze drying or extinguishing film fuelled fires. In order to improve these applications the prediction of the number and size of the secondary droplets is essential. In this work special emphasis is given to the formation process of secondary droplets during crown-type splashing. In this process liquid jets (or fingers) develop along the upper rim, which later on break-up into secondary droplets. Hence, the first step for the prediction of secondary droplets is to predict the number of jets. Therefore, a systematic experimental study is carried out, employing low surface tension liquids (~28 mN/m like n-Hexadecane and Hyspin. First, the splashing morphologies are linked to the characteristic crown parameters. Second, it is shown that the maximum number of liquid fingers from the liquid crown Nmax is not a linear function of the crown rim radius. Instead, we present the dependency of Nmax on experimental parameters like the non-dimensional film thickness (0.1 < δ < 0.5) and the Weber number (400 <We < 1700). The dimensionless film thickness δ has the strongest influence. An increase in δ results in a decrease of the maximum number of liquid fingers Nmax.</p>