People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ciarletti, Valérie
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (34/34 displayed)
- 2025Characterizing heterogeneities in the subsurface with an ultra-wideband GPR: Application to WISDOM, the GPR of the Rosalind Franklin ExoMars mission
- 2024Characterizing heterogeneities in the subsurface with an ultra-wideband GPR: Application to WISDOM, the GPR of the Rosalind Franklin ExoMars mission
- 2022Retrieval of the ground dielectric permittivity by planetary GPR accommodated on a rover: Application to the estimation of the reflectors' depth by the WISDOM/ExoMars radarcitations
- 2021WISDOM Antenna Pattern in the presence of Rover and Soil
- 2020Validation of an automated detection and characterization of diffraction curves in the WISDOM/ExoMars radargrams with a Hough transform
- 2019The WISDOM radar on the ExoMars rover designed to provide 3D mapping of the shallow subsurface at Oxia Planum
- 2019Characterization and performances of the WISDOM ground penetrating radar for the ExoMars 2020 mission
- 2018CONSERT probing of 67P/C-G nucleus during the ROSETTA mission, operations and results
- 2017 Interior of 67P/C-G comet as seen by CONSERT bistatic radar on Rosetta
- 2017CONSERT constrains the internal structure of 67P at a few-metre size scalecitations
- 2016An interpretation of the CONSERT and SESAME-PP results based on new permittivity measurements of porous water ice and ice-basaltic/organic dust mixtures suggests an increase of porosity with depth in 67P
- 2016Looking at Comet 67P Sub-surface in the Vicinity of Abydos
- 2016Electrical properties of the first meters of 67P/Churyumov-Gerasimenko’s nucleus as constrained by PP-SESAME/Philae/Rosetta
- 2016The electrical properties of Titan’s surface at the Huygens landing site measured with the PWA-HASI Mutual Impedance Probe. New approach and new findingscitations
- 2016Electrical properties and porosity of the first meter of the nucleus of 67P/Churyumov-Gerasimenko. As constrained by the Permittivity Probe SESAME-PP/Philae/Rosettacitations
- 2016Electrical properties and porosity of the first meter of the nucleus of 67P/Churyumov-Gerasimenkocitations
- 2016Characterizing the interior of 67P in the vicinity of Abydos
- 2016Heterogeneities of 67P nucleus seen by CONSERT in the vicinity of Abydos
- 2016Effect of meter-scale heterogeneities inside 67P nucleus on CONSERT data
- 2015Insights gained from Data Measured by the CONSERT Instrument during Philae's Descent onto 67P/C-G's surface
- 2015CONSERT Radar Investigations of the Shallow Subsurface of Comet 67P, in the Vicinity of the Philae Lander
- 2015Properties of the 67P/Churyumov-Gerasimenko interior revealed by CONSERT radarcitations
- 2015Findings from the PP-SESAME experiment on board the Philae/ROSETTA lander on the surface of comet 67P
- 2015CONSERT suggests a change in local properties of 67P/Churyumov-Gerasimenko's nucleus at depthcitations
- 2015The CONSERT Instrument during Philae's Descent onto 67P/C-G’s surface: Insights on Philae’s Attitude and the Surface Permittivity Measurements at the Agilkia-Landing-Site
- 2015investigating with the CONSERT bistatic radar a potential permittivity gradient at the Philae Landing site on 67P/Churyumov-Gerasimenko
- 2015Revealing the Possible Existence of a Near-Surface Gradient in Local Properties of 67P/Churyumov-Gerasimenko Nucleus Through CONSERT Measurements
- 2015The interior of 67P/C-G nucleus revealed by CONSERT measurements and simulations
- 2015The interior of 67P/C-G nucleus revealed by CONSERT measurements and simulations
- 2014Titan Ground Complex Permittivity at the HUYGENS Landing Site; the PWA-HASI and Other Instruments Data Revisited
- 2014Measuring the permittivity of the surface of the Churyumov-Gerasimenko nucleus: the PP-SESAME experiment on board the Philae/ROSETTA lander
- 2014Revealing the properties of Chuyurmov-Gerasimenko's shallow sub-surface through CONSERT's measurements at grazing angles
- 2013Evaluation of the first simulation tool to quantitatively interpret the measurements of the ExoMars mission's Wisdom GPR
- 2012Simulation of in-flight calibrations and first cometary permittivity measurements by PP-SESAME on Philae
Places of action
Organizations | Location | People |
---|
conferencepaper
The WISDOM radar on the ExoMars rover designed to provide 3D mapping of the shallow subsurface at Oxia Planum
Abstract
The WISDOM radar on-board the Rosalind Franklin ExoMars rover has been specifically designed to characterize the shallow Martian sub-surface. It will be operated at Oxia Planum (the mission's landing site) along the rover path and will reveal the sub-surface structure over a few-meter depth with a vertical resolution of a few centimeters. In combination with other instruments on-board the rover (especially, PanCam, Ma_MISS) , WISDOM will provide information essential to understand the 3D geological context and geologic evolution of the landing site, and to choose the best area and depth to collect samples. <P />The instrument's Flight Model has been integrated in 2019 on the mission's rover and a series of tests have been performed to characterize the instrument's response and performance after integration. The data acquired during these tests will be used to obtain calibrated data from the measurements performed on Mars and retrieve quantitative information about the detected units (such as permittivity and spatial extension). <P />Codes that take into account the specificities of the radar (accommodation above the surface, polarimetric capacity, antennas' pattern…) have been developed to provide 3D visualization of the detected structures with an enhanced resolution. They are integrated in the automatic data processing pipe-line. Reflectors on the surface and off-track reflectors will be identified to avoid misinterpretation of the radargrams. <P />Results obtained in artificial well documented environments and in natural analog environments will be presented to illustrate the capacity of the instrument to characterize in 2D and 3D the Martain shallow sub-surface....