People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Brouwers, Jos
Eindhoven University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Sustainable ambient pressure-dried silica aerogel from waste glasscitations
- 2024Improving the early reactivity of activated basic oxygen furnace slagcitations
- 2022Thermal and fire resistance of Class F fly ash based geopolymers – a reviewcitations
- 2021One-pot synthesis of monolithic silica-cellulose aerogel applying a sustainable sodium silicate precursorcitations
- 2020Effects of hydrophobic expanded silicate aggregates on properties of structural lightweight aggregate concretecitations
- 2019Characterization and performance of high volume recycled waste glass and ground granulated blast furnace slag or fly ash blended mortarscitations
- 2019Ionic interaction and liquid absorption by wood in lignocellulose inorganic mineral binder compositescitations
- 2018Effect of pore structure on the performance of photocatalytic lightweight lime-based finishing mortarcitations
- 2018Upgrading and evaluation of waste paper sludge ash in eco-lightweight cement compositescitations
- 2018On the effect of the physical structure of cement on shrinkage of cementitious materialscitations
- 2017Quantification of concrete aggregate liberation through abrasion comminution
- 2017Assessing the effect of CaSO4 content on the hydration kinetics, microstructure and mechanical properties of cements containing sugarscitations
- 2016Design and performance evaluation of ultra-lightweight geopolymer concretecitations
- 2015The effect of glucose on the hydration kinetics of ordinary portland cement
- 2014Synthesis, characterization and photocatalytic activity of WO3/TiO2 for NO removal under UV and visible light irradiationcitations
- 2014Precipitation synthesis of WO3 for NOx removal using PEG as templatecitations
- 2014Wood-wool cement board : potential and challenges
- 2013Photocatalytic removal of nitric oxide by Bi2Mo3O12 prepared by co-precipitation methodcitations
Places of action
Organizations | Location | People |
---|
document
Quantification of concrete aggregate liberation through abrasion comminution
Abstract
Recycling concrete waste into structural concrete reduces the consumption of raw materials, decreases transport and production energy costs, and saves the use of limited landfill space. Since attached mortar is known for lowering the performance of recycled concrete aggregates (RCA) in concrete applications, current recycling involves the use of RCA as a road base material or in non-structural concrete with low strength requirements, therefore, the application in structural concrete is limited. In general, the applicability of RCA is improved by comminution through various crushing methods. Hereby, the parent particles are cleaved or shattered into a minimum of two particles with a comparable size and a number of much smaller particles. Through this technique, both mortar and aggregates fracture alike, resulting solely in a size reduction. However, to minimise undesirable effects, original natural aggregates (ONA) have to be cleared from attached mortar. Through the use of attrition and shear instead of pressure or impact, surface layers, edges and corners are removed thereby producing particles both slightly smaller and much smaller than the initial. In this study, ONA liberation through abrasion was investigated.