Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Phi, Do Duc

  • Google
  • 3
  • 6
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2012Modeling Damage by Crack Nucleation and Growth in Porous Media1citations
  • 2012A note on the numerical homogenisation of the mechanical behaviour of an argillaceous rock7citations
  • 2012Hydromechanical properties of some mortars used in some ecologic construction techniquescitations

Places of action

Chart of shared publication
Hoxha, Dashnor
3 / 11 shared
Eslami, Javad
1 / 2 shared
Grgic, D.
1 / 4 shared
Naima, Belayachi
1 / 1 shared
Belayachi, Naima
1 / 2 shared
Nicolae, Ungureanu Vladimir
1 / 1 shared
Chart of publication period
2012

Co-Authors (by relevance)

  • Hoxha, Dashnor
  • Eslami, Javad
  • Grgic, D.
  • Naima, Belayachi
  • Belayachi, Naima
  • Nicolae, Ungureanu Vladimir
OrganizationsLocationPeople

article

Hydromechanical properties of some mortars used in some ecologic construction techniques

  • Hoxha, Dashnor
  • Belayachi, Naima
  • Phi, Do Duc
  • Nicolae, Ungureanu Vladimir
Abstract

This paper presents results of hydromechanical characterization tests performed on some mortars used in eco-construction practice. Typically, such mortars could be found in buildings constructed following so called GREB technique that uses straw bales as structural and insulating elements in addition to a wood frame. The full experimental program includes thermal, mechanical and hydraulic - hygroscopic tests. Mechanical tests, including uniaxial compression test and three point bending test and hydraulic tests including water and vapor water permeability, retention curve and unsaturated water permeability have been performed on three earth-cement mortars with sawdust additive. Tests were performed in age of 7, 14, 28 and 120 days. For retention curve and so called relative permeability a simple method has been used based on measurements of masse variations of samples on a controlled humidity environment and an inverse problem approach. Using of sawdust improves hydraulic properties of these mortars but the early age strength of these mortars has to be improved by cement additives.

Topics
  • strength
  • cement
  • bending flexural test
  • compression test
  • permeability
  • wood