People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Schaubroeck, David
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2023Photo-crosslinkable biodegradable polymer coating to control fertilizer releasecitations
- 2021Investigating the nucleation of AlOx and HfOx ALD on polyimide : influence of plasma activationcitations
- 2020Development of an active high-density transverse intrafascicular micro-electrode probecitations
- 2020The use of ALD layers for hermetic encapsulation in the development of a flexible implantable micro electrode for neural recording and stimulation
- 2020The use of ALD layers for hermetic encapsulation in the development of a flexible implantable micro electrode for neural recording and stimulation
- 2019FITEP : a Flexible Implantable Thin Electronic Package platform for long term implantation applications, based on polymer and ceramic ALD multilayers
- 2019FITEP : a Flexible Implantable Thin Electronic Package platform for long term implantation applications, based on polymer and ceramic ALD multilayers
- 2019Ultra-long-term reliable encapsulation using an atomic layer deposited Hfo2/Al2o3/Hfo2 triple-interlayer for biomedical implantscitations
- 2019FITEP: a Flexible Implantable Thin Electronic Package platform for long term implantation applications, based on polymer and ceramic ALD multilayers
- 2017Ultra-thin biocompatible implantable chip for bidirectional communication with peripheral nervescitations
- 2017Ultra-thin biocompatible implantable chip for bidirectional communication with peripheral nervescitations
- 2017Accelerated hermeticity testing of biocompatible moisture barriers used for encapsulation of implantable medical devices
- 2013Ultrafast DPSS laser interaction with thin-film barrier stacks
- 2013Magnesium-enhanced enzymatically mineralized platelet-rich fibrin for bone regeneration applicationscitations
- 2011Surface modification of a photo definable epoxy resin with polydopamine to improve adhesion with electroless deposited copper
- 2011Surface modification of a photo definable epoxy resin with polydopamine to improve adhesion with electroless deposited copper
Places of action
Organizations | Location | People |
---|
document
Surface modification of a photo definable epoxy resin with polydopamine to improve adhesion with electroless deposited copper
Abstract
The rapid evolution of microelectronics industry translates itself into a need for higher density substrates with smaller features. In order to fulfill these requirements, one has to minimize the roughness treatment for dielectric materials (to avoid high frequency losses due to skin effect in the conductor).1, 2 Since surface roughness is one of the key treatments for the improvement of adhesion, chemical surface modification can (over)compensate this loss of adhesion.3, 4In 2006, Messerschmitt et. al deposited a bio-inspired multifunctional polydopamine coating on a variety of substrates.5 Promising results were obtained concerning adhesion towards metals and biomacromolecules.Here, the surface of an epoxy resin is modified with a polydopamine layer to improve adhesion with electroless copper. A profound surface analysis of polydopamine modified epoxy resin surfaces is presented. Next, the influence of this modification strategy on the adhesion of electroless deposited copper is discussed. Finally, correlations between the adhesion strength and interface analysis are commented.