Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Napari, Mari

  • Google
  • 15
  • 51
  • 278

King's College London

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (15/15 displayed)

  • 2024Forming-free and non-linear resistive switching in bilayer HfOx/TaOx memory devices by interface-induced internal resistance2citations
  • 2024Spatially selective crystallization of ferroelectric Hf0.5Zr0.5O2 films induced by sub-nanosecond laser annealing4citations
  • 2024Forming-free and non-linear resistive switching in bilayer HfO x /TaO x memory devices by interface-induced internal resistance2citations
  • 2021Nickel oxide thin films grown by chemical deposition techniques: Potential and challenges in next‐generation rigid and flexible device applicationscitations
  • 2021Atomic scale surface modification of TiO2 3D nano-arrays : plasma enhanced atomic layer deposition of NiO for photocatalysis5citations
  • 2020Ti Alloyed α-Ga2O3 : route towards Wide Band Gap Engineering25citations
  • 2020Role of ALD Al2O3 surface passivation on the performance of p-type Cu2O thin film transistorscitations
  • 2020Ti alloyed $α$-Ga$_2$O$_3$: route towards wide band gap engineeringcitations
  • 2020Bandgap Lowering in Mixed Alloys of Cs2Ag(SbxBi1-x)Br6 Double Perovskite Thin Filmscitations
  • 2020Ti Alloyed α-Ga2O3: Route towards Wide Band Gap Engineering25citations
  • 2020Ti Alloyed α-Ga2O3: Route towards Wide Band Gap Engineering.citations
  • 2020Bandgap lowering in mixed alloys of Cs2Ag(SbxBi1−x)Br6 double perovskite thin films97citations
  • 2020Bandgap lowering in mixed alloys of Cs2Ag(SbxBi1−x)Br6 double perovskite thin films97citations
  • 2020Ti Alloyed α -Ga 2 O 3: Route towards Wide Band Gap Engineeringcitations
  • 2017Room-temperature plasma-enhanced atomic layer deposition of ZnO : Film growth dependence on the PEALD reactor configuration21citations

Places of action

Chart of shared publication
Prodromakis, Themistoklis
2 / 23 shared
Simanjuntak, Firman Mangasa
2 / 11 shared
Stathopoulos, Spyros
2 / 7 shared
Frechilla, Alejandro
1 / 1 shared
Fuente, Germán F. De La
1 / 23 shared
Barriuso, Eduardo
1 / 1 shared
Flewitt, Andrew
1 / 3 shared
Niang, Kham
1 / 2 shared
Hellenbrand, Markus
1 / 4 shared
Angurel, Luis A.
1 / 16 shared
Strkalj, Nives
1 / 2 shared
Magén, César
1 / 53 shared
Macmanus-Driscoll, Judith L.
2 / 28 shared
Pardo, José A.
1 / 2 shared
Antorrena, Guillermo
1 / 2 shared
Štrichovanec, Pavel
1 / 2 shared
Simanjuntak, Firman
1 / 4 shared
Macmanusdriscoll, Judith L.
1 / 2 shared
Huq, Tahmida N.
1 / 2 shared
Hoye, Robert L. Z.
2 / 26 shared
Johnson, Andrew L.
1 / 40 shared
Marken, Frank
1 / 91 shared
Sajavaara, Timo
6 / 55 shared
Innocent, Jerome W. F.
1 / 1 shared
Harris-Lee, Thom R.
1 / 1 shared
Regue, Miriam
1 / 2 shared
Alkhalil, Feras
1 / 1 shared
Frentrup, Martin
4 / 19 shared
Kovács, András
4 / 19 shared
Chalker, Paul
4 / 8 shared
Huq, Tahmid
1 / 1 shared
Massabuau, Fabien
4 / 7 shared
Barthel, Armin
4 / 5 shared
Roberts, Joseph
4 / 12 shared
Oliver, Rachel
4 / 16 shared
Huq, Tahmida
3 / 3 shared
Andaji-Garmaroudi, Zahra
1 / 13 shared
Scanlon, David O.
1 / 16 shared
Kavanagh, Seán R.
1 / 6 shared
Abdi-Jalebi, Mojtaba
1 / 29 shared
Palgrave, Robert G.
1 / 6 shared
Laitinen, Mikko
1 / 16 shared
Davies, Daniel W.
1 / 2 shared
Julin, Jaakko
2 / 22 shared
Walsh, Aron
1 / 79 shared
Friend, Richard H.
1 / 48 shared
Isaacs, Mark A.
1 / 22 shared
Li, Zewei
1 / 3 shared
Veselov, Alexey
1 / 1 shared
Lahtinen, Manu
1 / 14 shared
Østreng, Erik
1 / 3 shared
Chart of publication period
2024
2021
2020
2017

Co-Authors (by relevance)

  • Prodromakis, Themistoklis
  • Simanjuntak, Firman Mangasa
  • Stathopoulos, Spyros
  • Frechilla, Alejandro
  • Fuente, Germán F. De La
  • Barriuso, Eduardo
  • Flewitt, Andrew
  • Niang, Kham
  • Hellenbrand, Markus
  • Angurel, Luis A.
  • Strkalj, Nives
  • Magén, César
  • Macmanus-Driscoll, Judith L.
  • Pardo, José A.
  • Antorrena, Guillermo
  • Štrichovanec, Pavel
  • Simanjuntak, Firman
  • Macmanusdriscoll, Judith L.
  • Huq, Tahmida N.
  • Hoye, Robert L. Z.
  • Johnson, Andrew L.
  • Marken, Frank
  • Sajavaara, Timo
  • Innocent, Jerome W. F.
  • Harris-Lee, Thom R.
  • Regue, Miriam
  • Alkhalil, Feras
  • Frentrup, Martin
  • Kovács, András
  • Chalker, Paul
  • Huq, Tahmid
  • Massabuau, Fabien
  • Barthel, Armin
  • Roberts, Joseph
  • Oliver, Rachel
  • Huq, Tahmida
  • Andaji-Garmaroudi, Zahra
  • Scanlon, David O.
  • Kavanagh, Seán R.
  • Abdi-Jalebi, Mojtaba
  • Palgrave, Robert G.
  • Laitinen, Mikko
  • Davies, Daniel W.
  • Julin, Jaakko
  • Walsh, Aron
  • Friend, Richard H.
  • Isaacs, Mark A.
  • Li, Zewei
  • Veselov, Alexey
  • Lahtinen, Manu
  • Østreng, Erik
OrganizationsLocationPeople

document

Role of ALD Al2O3 surface passivation on the performance of p-type Cu2O thin film transistors

  • Napari, Mari
Abstract

High-performance p-type oxide thin film transistors (TFTs) have great potential for many semiconductor applications. However, these devices typically suffer from low hole mobility and high off-state currents. We fabricated p-type TFTs with a phase-pure polycrystalline Cu2O semiconductor channel grown by atomic layer deposition (ALD). The TFT switching characteristics were improved by applying a thin ALD Al2O3 passivation layer on the Cu2O channel, followed by vacuum annealing at 300 C. Detailed characterisation by TEM-EDX and XPS shows that the surface of Cu2O is reduced following Al2O3 deposition and indicates the formation of 1-2 nm thick CuAlO2 interfacial layer. This, together with field-effect passivation caused by the high negative fixed charge of the ALD Al2O3, leads to an improvement in the TFT performance by reducing the density of deep trap states as well as by reducing the accumulation of electrons in the semiconducting layer in the device off-state.

Topics
  • density
  • impedance spectroscopy
  • surface
  • phase
  • mobility
  • thin film
  • x-ray photoelectron spectroscopy
  • semiconductor
  • transmission electron microscopy
  • annealing
  • Energy-dispersive X-ray spectroscopy
  • atomic layer deposition