People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kabir, Ahsanul
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Assessment of High-Temperature Oxidation Properties of 316L Stainless Steel Powder and Sintered Porous Supports for Potential Solid Oxide Cells Applicationscitations
- 2024Non-classical electrostriction in calcium-doped cerium oxide ceramicscitations
- 2024Non-classical electrostriction in calcium-doped cerium oxide ceramicscitations
- 2024Enhanced Mechanical and Electromechanical Properties of Compositionally Complex Zirconia Zr 1- x (Gd 1/5 Pr 1/5 Nd 1/5 Sm 1/5 Y 1/5 ) x O 2-δ Ceramicscitations
- 2024Enhanced Mechanical and Electromechanical Properties of Compositionally Complex Zirconia Zr1-x(Gd1/5Pr1/5Nd1/5Sm1/5Y1/5)xO2-δ Ceramicscitations
- 2021Low-temperature synthesis of bismuth titanate by modified citrate amorphous methodcitations
- 2021Low-temperature synthesis of bismuth titanate by modified citrate amorphous methodcitations
- 2021Gigantic electro-chemo-mechanical properties of nanostructured praseodymium doped ceriacitations
- 2021Gigantic electro-chemo-mechanical properties of nanostructured praseodymium doped ceriacitations
- 2020Effect of Cold Sintering Process (CSP) on the Electro-Chemo-Mechanical Properties of Gd-doped Ceria (GDC)citations
- 2020Steady Non-classical Giant Electrostriction in Calcium Doped Cerium Oxide
- 2020Enhanced Electromechanical Response in Sm and Nd Co-doped Ceriacitations
- 2020The role of oxygen defects on the electro-chemo-mechanical properties of highly defective gadolinium doped ceriacitations
- 2020Tuning the electro-chemo-mechanical properties in defective cerium oxides
- 2020Non-classical electrostrictive response in bulk ceria: tailoring by microstructure and defect chemistry
- 2020Tunable Giant Electromechanical Properties in Defective Co-doped Ceria Systems
- 2019Effect of oxygen defects blocking barriers on gadolinium doped ceria (GDC) electro-chemo-mechanical propertiescitations
- 2019Microstructure Forging of Electromechanically Active Bulk Ceria
Places of action
Organizations | Location | People |
---|
conferencepaper
Tunable Giant Electromechanical Properties in Defective Co-doped Ceria Systems
Abstract
Recent studies demonstrate that highly defective cerium oxide, e.g. Gd-doped ceria, is capable of generating a giant electromechanical effect that is orders of magnitude larger than other ceramic based electrostrictors, e.g. lead-based piezoelectrics. This is an unconventional response as it does not obey the Newnham’s empirical law and it is atomistically explained by the lability of Ce- pairs. In this report, we investigate the electrostrictive properties of defective ceria with 0.25−3.75% oxygen vacancies introduced by a co-doping (Sm, Nd) concept. The codoping strategy leads to a different oxygen vacancy configuration in the lattice than for the single dopant case, delineated by a relatively lower vacancy-dopant association energy. This results in electrostrictive response with high strain coefficient (M<sub>33</sub> in the 0.1-10 10<sup>-17</sup> m<sup>2</sup>/V<sup>2</sup>) as well as in marked, strain saturation effects to the applied field from 0 to 120 kV/m and in a relaxation behavior by increasing the frequency of the applied field (0.1 to 1 kHz). Remarkably, M<sub>33</sub> follows a strict dependency on oxygen vacancy configuration rather than their nominal concentration. Such outcomes define the hypothesis that electrostriction does occur due to oxygen vacancy concentration but it is firmly tuned by oxygen vacancy