Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Cunff, Loïc Le

  • Google
  • 1
  • 5
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 20123D modeling of metamaterials at oblique incidence and effective analysiscitations

Places of action

Chart of shared publication
Lerondel, Gilles
1 / 14 shared
Vial, Alexandre
1 / 8 shared
Blaize, Sylvain
1 / 8 shared
Collin, Stéphane
1 / 21 shared
Lupu, Anatole
1 / 2 shared
Chart of publication period
2012

Co-Authors (by relevance)

  • Lerondel, Gilles
  • Vial, Alexandre
  • Blaize, Sylvain
  • Collin, Stéphane
  • Lupu, Anatole
OrganizationsLocationPeople

document

3D modeling of metamaterials at oblique incidence and effective analysis

  • Lerondel, Gilles
  • Vial, Alexandre
  • Cunff, Loïc Le
  • Blaize, Sylvain
  • Collin, Stéphane
  • Lupu, Anatole
Abstract

The straightforward modeling of a metamaterial at its characteristic scale is a broad issue. The use of the “material” word implies that one can measure macroscopic quantities from it (such as an effective permittivity or an effective permeability). This approach has yet to be validated for any angle of incidence. The dependence of the refractive index on this angle becomes especially strong when the system is in the grazing incidence configuration, or as it starts guiding light. An effective model thus becomes of great importance if one wants to model the behavior of complex integrated devices based on metamaterials. The studies presented here have been done as part of the ANR METAPHOTONIQUE project, whose first purpose is to design metametarials operating on top of SOI guiding structures (Silicon on Insulator) at 1.55 micron. We present results of 3D simulations, done through the FDTD method, of a metamaterial of which the optical response has been computed at normal incidence and oblique incidence. We show that the full properties - the permittivity and permeability tensors - of such structures can be retrieved numerically thanks to that data and the use of optimization methods. We then study the range of validity of the effective index model, and if this model applies in the guided light configuration.

Topics
  • impedance spectroscopy
  • simulation
  • Silicon
  • permeability
  • metamaterial