Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ribeiro, C. Silva

  • Google
  • 1
  • 3
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2005Evaluation of y2O3 as front layer of ceramic crucibles for vaccum induction melting of TiAl based alloyscitations

Places of action

Chart of shared publication
Teodoro, Orlando
1 / 16 shared
Barbosa, Joaquim
1 / 3 shared
Monteiro, Caetano
1 / 1 shared
Chart of publication period
2005

Co-Authors (by relevance)

  • Teodoro, Orlando
  • Barbosa, Joaquim
  • Monteiro, Caetano
OrganizationsLocationPeople

document

Evaluation of y2O3 as front layer of ceramic crucibles for vaccum induction melting of TiAl based alloys

  • Teodoro, Orlando
  • Barbosa, Joaquim
  • Ribeiro, C. Silva
  • Monteiro, Caetano
Abstract

<p>During the last decades titanium alloys were found to be valuable engineering materials for many different applications. Formerly used in critical applications like aerospace, aeronautic and military equipment, where the factor cost is not relevant, titanium alloys are finding now new and different markets. However, the development of such new markets will depend on an effective cost reduction of titanium parts, in order to achieve a selling cost suitable with its application in consumer goods. A possible solution to decrease production costs might be the use of traditional casting techniques to produce near net shape functional parts. During the last years, the authors have developed extensive research work on this field, and a new technique both for melting and moulding, using ceramic multi-layered crucibles and investment casting shells was developed. This paper presents some of the results obtained during that research work: Ti-48Al alloy were melted and cooled inside CaO, MgO and Y<sub>2</sub>O<sub>3</sub>stabilized ZrO<sub>2</sub>crucibles with inside layer of Y<sub>2</sub>O<sub>3</sub>. The chemical composition, hardness and microstructure at the metal-crucible interface, studied by secondary ion mass spectrometry, SEM/EDS and XRS are presented. On a second step, the same alloy was melted on the same crucibles, and poured into graphite moulds, and the crucibles wall was characterized by SEM/EDS and XRS.</p>

Topics
  • impedance spectroscopy
  • microstructure
  • scanning electron microscopy
  • layered
  • hardness
  • chemical composition
  • titanium
  • titanium alloy
  • Energy-dispersive X-ray spectroscopy
  • ceramic
  • spectrometry
  • secondary ion mass spectrometry
  • investment casting