Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Schuscha, Manuel

  • Google
  • 3
  • 5
  • 15

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2020Mapping fatigue strength of imperfective cast steel to manufacturing process by generalized fracture mechanicscitations
  • 2019Notch Stress Intensity Factor (NSIF)-Based Fatigue Design to Assess Cast Steel Porosity and Related Artificially Generated Imperfections9citations
  • 2019Numerical crack growth study on porosity afflicted cast steel specimens6citations

Places of action

Chart of shared publication
Leitner, Martin
2 / 66 shared
Horvath, Michael
1 / 6 shared
Stoschka, Michael
2 / 29 shared
Meneghetti, Giovanni
1 / 9 shared
Pusterhofer, Stefan
1 / 2 shared
Chart of publication period
2020
2019

Co-Authors (by relevance)

  • Leitner, Martin
  • Horvath, Michael
  • Stoschka, Michael
  • Meneghetti, Giovanni
  • Pusterhofer, Stefan
OrganizationsLocationPeople

thesis

Mapping fatigue strength of imperfective cast steel to manufacturing process by generalized fracture mechanics

  • Schuscha, Manuel
Abstract

Since the usability of castings is influenced by the presence of immanent defects, the aim of this work is to investigate the effects of cast steel imperfections on the long life fatigue strength and to enable the assessment based on generalized fracture mechanics.For this purpose, the cast steel material G21Mn5 in normalized condition is utilized for the characterization of the fundamental fatigue, fracture mechanical as well as quasi-static parameters. Initially, the near-defect-free material strength is investigated by means of plain specimens, whereby different load stress ratios are examined. Furthermore, specimens exhibiting circumferential V-shaped notches with varying opening angles are investigated, which confirms a fundamental applicability of the generalized fracture mechanics. For this purpose, the notched specimen geometries are evaluated numerically according to the concept of the notch stress intensity factors. Subsequent numerical casting simulations support the development of defect-afflicted large-scale specimens, which serve the transferability from notched specimens towards shrinkage imperfections of the presented concept. Based on the results of the imperfective specimen’s fractographic analysis and of the fracture mechanical investigations, numerical crack propagation simulations are carried out, which subsequently enables the geometrical substitution of an actual casting flaw by a fracture mechanical-equivalent penny-shaped geometry. Finally, a defect evaluation based on the generalized Kitagawa diagram as well as a comprehensive elastic and elasto-plastic strain-energy-density-based assessment methodology is facilitated, taking into account the evaluated material parameters and the results of the numerical simulations. The introduced approaches for the evaluation of imperfective large-scale cast steel specimens exhibits a sound agreement with the experimentally determined data, whereby defect-related data are taken either from the fracture surfaces or from conducted X-ray scans.In contrast to the methods currently used in the evaluation of imperfective components, which are mostly based on a qualitative comparison with reference X-ray radiographs, these extended fracture mechanical and strain energy density approaches allow an absolute evaluation of the fatigue strength impaired by inherent defects, whereat the local defect geometry is taken uniformly into account and thus facilitates a mutual link between defects, such as shrinkage pores, and crack-like imperfections by generalized fracture mechanics.

Topics
  • density
  • impedance spectroscopy
  • pore
  • surface
  • polymer
  • energy density
  • simulation
  • crack
  • strength
  • steel
  • fatigue
  • casting
  • cast steel