Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jolu, Thomas Le

  • Google
  • 4
  • 6
  • 148

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2015Fatigue lifetime and tearing resistance of AA2198 Al-Cu-Li alloy friction stir welds: fffect of defects65citations
  • 2014Microstructural characterization of internal welding defects and their effect on the tensile behavior of FSW joints of AA2198 Al-Cu-Li alloy44citations
  • 2013Effect of welding defects on plastic behaviour and fatigue lifetime of friction stir welded Al-Cu-Li alloycitations
  • 2010Effect of joint line remnant on fatigue lifetime of friction stir welded Al-Cu-Li alloy39citations

Places of action

Chart of shared publication
Morgeneyer, Thilo F.
4 / 7 shared
Denquin, Anne
3 / 11 shared
Gourgues-Lorenzon, Anne-Françoise
4 / 66 shared
Sennour, Mohamed
1 / 37 shared
Besson, Jacques
1 / 104 shared
Laurent, Anne
1 / 2 shared
Chart of publication period
2015
2014
2013
2010

Co-Authors (by relevance)

  • Morgeneyer, Thilo F.
  • Denquin, Anne
  • Gourgues-Lorenzon, Anne-Françoise
  • Sennour, Mohamed
  • Besson, Jacques
  • Laurent, Anne
OrganizationsLocationPeople

document

Effect of welding defects on plastic behaviour and fatigue lifetime of friction stir welded Al-Cu-Li alloy

  • Morgeneyer, Thilo F.
  • Jolu, Thomas Le
  • Denquin, Anne
  • Gourgues-Lorenzon, Anne-Françoise
Abstract

The effects of joint line remnant (JLR), kissing bond (KB), and clearance between the sheets (Gap) on tensile and fatigue properties of 2198-T851 friction stir welds have been quantitatively evaluated with respect to a reference weld made using one single sheet. The JLR has no significant influence in the investigated conditions. KB and Gap-induced defects do not significantly influence plastic yield but may induce premature crack initiation by ductile tearing and intergranular decohesions respectively. A critical value for KB opening (280 MPa), a threshold value for fatigue crack propagation from the KB (1 MPa√m) and crack growth rates consistent with literature data have been determined.

Topics
  • polymer
  • crack
  • fatigue