Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Millange, Franck

  • Google
  • 12
  • 54
  • 1318

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (12/12 displayed)

  • 2021New hybrid MOF/polymer composites for the photodegradation of organic dyes62citations
  • 2016Iodine sequestration by thiol-modified MIL-53(Al)68citations
  • 2015Metal-organic frameworks from divalent metals and 1,4-benzenedicarboxylate with bidentate pyridine-N-oxide co-ligands19citations
  • 2015Metal-organic frameworks from divalent metals and 1,4-benzenedicarboxylate with bidentate pyridine-N-oxide co-ligands19citations
  • 2015Metal–Organic Frameworks from Divalent Metals and 1,4-Benzenedicarboxylate with Bidentate Pyridine- N -oxide Co-ligands19citations
  • 2013Isomorphous Substitution in a Flexible Metal–Organic Framework: Mixed-Metal, Mixed-Valent MIL-53 Type Materials70citations
  • 2013Adsorption of N/S heterocycles in the flexible metal–organic framework MIL-53(FeIII) studied by in situ energy dispersive X-ray diffraction44citations
  • 2012Liquid-Phase Adsorption and Separation of Xylene Isomers by the Flexible Porous Metal-Organic Framework MIL-53(Fe)166citations
  • 2007Mixed-Valence Li/Fe-Based Metal-Organic Frameworks with Both Reversible Redox and Sorption Properties617citations
  • 2006Synthesis of MIL-102, a chromium carboxylate metal-organic framework, with gas sorption analysis234citations
  • 2006A new isoreticular class of metal-organic-frameworks with the MIL-88 topologycitations
  • 2006An EXAFS study of the formation of a nanoporous metal-organic framework: evidence for the retention of secondary building units during synthesiscitations

Places of action

Chart of shared publication
Airoudj, Aissam
1 / 17 shared
Brahmi, Chaima
1 / 6 shared
Vaulot, Cyril
1 / 8 shared
Benltifa, Mahmoud
1 / 6 shared
Dumur, Frédéric
1 / 26 shared
Morlet-Savary, Fabrice
1 / 22 shared
Lalevée, Jacques
1 / 25 shared
Michelin, Laure
1 / 9 shared
Frigoli, Michel
2 / 2 shared
Loiseau, Thierry
1 / 5 shared
Guillou, Nathalie
3 / 17 shared
Volkringer, Christophe
1 / 6 shared
Stevenson, Victoria
1 / 1 shared
Walton, Richard I.
7 / 34 shared
Munn, Alexis S.
4 / 4 shared
Falaise, Clément
1 / 5 shared
Cibin, Giannantonio
1 / 9 shared
Llewellyn, Philip L.
4 / 8 shared
Bourelly, Sandrine
3 / 3 shared
Amabilino, Silvia
3 / 3 shared
Lennox, Matthew J.
2 / 5 shared
Stevens, Thomas W.
3 / 3 shared
Duren, Tina
2 / 11 shared
Clarkson, Guy J.
3 / 12 shared
Daniels, Luke M.
3 / 6 shared
Lennox, Matthew
1 / 1 shared
Düren, Tina
2 / 3 shared
Breeze, Matthew I.
1 / 1 shared
Dent, Andrew J.
1 / 1 shared
Daturi, Marco
1 / 8 shared
Grenèche, Jean-Marc
1 / 15 shared
Vimont, Alexandre
1 / 6 shared
Clet, Guillaume
1 / 3 shared
Campo, Betiana C.
1 / 1 shared
De Vos, Dirk E.
1 / 2 shared
Walton, Richard
1 / 5 shared
Van De Voorde, Ben
1 / 3 shared
Munn, Alexis
1 / 1 shared
El Osta, Racha
1 / 1 shared
De Vos, Dirk
1 / 11 shared
Vermoortele, Frederik
1 / 1 shared
Carlin-Sinclair, Abel
1 / 1 shared
Tarascon, Jeanmarie
1 / 26 shared
Serre, Christian
4 / 26 shared
Férey, Gérard
2 / 2 shared
Greneche, Jean-Marc
1 / 49 shared
Doublet, Marie-Liesse
1 / 15 shared
Morcrette, Mathieu
1 / 14 shared
Bourrelly, Sandrine
1 / 3 shared
Latroche, Michel
1 / 35 shared
Surblé, Suzy
1 / 9 shared
Surble, Suzy
2 / 4 shared
Ferey, Gerard
2 / 3 shared
Mellot-Draznieks, Caroline
1 / 4 shared
Chart of publication period
2021
2016
2015
2013
2012
2007
2006

Co-Authors (by relevance)

  • Airoudj, Aissam
  • Brahmi, Chaima
  • Vaulot, Cyril
  • Benltifa, Mahmoud
  • Dumur, Frédéric
  • Morlet-Savary, Fabrice
  • Lalevée, Jacques
  • Michelin, Laure
  • Frigoli, Michel
  • Loiseau, Thierry
  • Guillou, Nathalie
  • Volkringer, Christophe
  • Stevenson, Victoria
  • Walton, Richard I.
  • Munn, Alexis S.
  • Falaise, Clément
  • Cibin, Giannantonio
  • Llewellyn, Philip L.
  • Bourelly, Sandrine
  • Amabilino, Silvia
  • Lennox, Matthew J.
  • Stevens, Thomas W.
  • Duren, Tina
  • Clarkson, Guy J.
  • Daniels, Luke M.
  • Lennox, Matthew
  • Düren, Tina
  • Breeze, Matthew I.
  • Dent, Andrew J.
  • Daturi, Marco
  • Grenèche, Jean-Marc
  • Vimont, Alexandre
  • Clet, Guillaume
  • Campo, Betiana C.
  • De Vos, Dirk E.
  • Walton, Richard
  • Van De Voorde, Ben
  • Munn, Alexis
  • El Osta, Racha
  • De Vos, Dirk
  • Vermoortele, Frederik
  • Carlin-Sinclair, Abel
  • Tarascon, Jeanmarie
  • Serre, Christian
  • Férey, Gérard
  • Greneche, Jean-Marc
  • Doublet, Marie-Liesse
  • Morcrette, Mathieu
  • Bourrelly, Sandrine
  • Latroche, Michel
  • Surblé, Suzy
  • Surble, Suzy
  • Ferey, Gerard
  • Mellot-Draznieks, Caroline
OrganizationsLocationPeople

article

Isomorphous Substitution in a Flexible Metal–Organic Framework: Mixed-Metal, Mixed-Valent MIL-53 Type Materials

  • Breeze, Matthew I.
  • Dent, Andrew J.
  • Walton, Richard I.
  • Millange, Franck
  • Daturi, Marco
  • Grenèche, Jean-Marc
  • Vimont, Alexandre
  • Clet, Guillaume
  • Campo, Betiana C.
Abstract

Mixed-metal iron–vanadium analogues of the 1,4-benzenedicarboxylate (BDC) metal–organic framework MIL-53 have been synthesized solvothermally in N,N′-dimethylformamide (DMF) from metal chlorides using initial Fe:V ratios of 2:1 and 1:1. At 200 °C and short reaction time (1 h), materials (Fe,V)II/IIIBDC(DMF1–xFx) crystallize directly, whereas the use of longer reaction times (3 days) at 170 °C yields phases of composition [(Fe,V)III0.5(Fe,V)0.5II(BDC)(OH,F)]0.5–·0.5DMA+ (DMA = dimethylammonium). The identity of the materials is confirmed using high-resolution powder X-ray diffraction, with refined unit cell parameters compared to known pure iron analogues of the same phases. The oxidation states of iron and vanadium in all samples are verified using X-ray absorption near edge structure (XANES) spectroscopy at the metal K-edges. This shows that in the two sets of materials each of the vanadium and the iron centers are present in both +2 and +3 oxidation states. The local environment and oxidation state of iron is confirmed by 57Fe Mössbauer spectrometry. Infrared and Raman spectroscopies as a function of temperature allowed the conditions for removal of extra-framework species to be identified, and the evolution of μ2-hydroxyls to be monitored. Thus calcination of the mixed-valent, mixed-metal phases [(Fe,V)III0.5(Fe,V)0.5II(BDC)(OH,F)]0.5–·0.5DMA+ yields single-phase MIL-53-type materials, (Fe,V)III(BDC)(OH,F). The iron-rich, mixed-metal MIL-53 shows structural flexibility that is distinct from either the pure Fe material or the pure V material, with a thermally induced pore opening upon heating that is reversible upon cooling. In contrast, the material with a Fe:V content of 1:1 shows an irreversible expansion upon heating, akin to the pure vanadium analogue, suggesting the presence of some domains of vanadium-rich regions that can be permanently oxidized to V(IV).

Topics
  • impedance spectroscopy
  • pore
  • phase
  • powder X-ray diffraction
  • iron
  • spectrometry
  • vanadium