People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Millange, Franck
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2021New hybrid MOF/polymer composites for the photodegradation of organic dyescitations
- 2016Iodine sequestration by thiol-modified MIL-53(Al)citations
- 2015Metal-organic frameworks from divalent metals and 1,4-benzenedicarboxylate with bidentate pyridine-N-oxide co-ligandscitations
- 2015Metal-organic frameworks from divalent metals and 1,4-benzenedicarboxylate with bidentate pyridine-N-oxide co-ligandscitations
- 2015Metal–Organic Frameworks from Divalent Metals and 1,4-Benzenedicarboxylate with Bidentate Pyridine- N -oxide Co-ligandscitations
- 2013Isomorphous Substitution in a Flexible Metal–Organic Framework: Mixed-Metal, Mixed-Valent MIL-53 Type Materialscitations
- 2013Adsorption of N/S heterocycles in the flexible metal–organic framework MIL-53(FeIII) studied by in situ energy dispersive X-ray diffractioncitations
- 2012Liquid-Phase Adsorption and Separation of Xylene Isomers by the Flexible Porous Metal-Organic Framework MIL-53(Fe)citations
- 2007Mixed-Valence Li/Fe-Based Metal-Organic Frameworks with Both Reversible Redox and Sorption Propertiescitations
- 2006Synthesis of MIL-102, a chromium carboxylate metal-organic framework, with gas sorption analysiscitations
- 2006A new isoreticular class of metal-organic-frameworks with the MIL-88 topology
- 2006An EXAFS study of the formation of a nanoporous metal-organic framework: evidence for the retention of secondary building units during synthesis
Places of action
Organizations | Location | People |
---|
article
Isomorphous Substitution in a Flexible Metal–Organic Framework: Mixed-Metal, Mixed-Valent MIL-53 Type Materials
Abstract
Mixed-metal iron–vanadium analogues of the 1,4-benzenedicarboxylate (BDC) metal–organic framework MIL-53 have been synthesized solvothermally in N,N′-dimethylformamide (DMF) from metal chlorides using initial Fe:V ratios of 2:1 and 1:1. At 200 °C and short reaction time (1 h), materials (Fe,V)II/IIIBDC(DMF1–xFx) crystallize directly, whereas the use of longer reaction times (3 days) at 170 °C yields phases of composition [(Fe,V)III0.5(Fe,V)0.5II(BDC)(OH,F)]0.5–·0.5DMA+ (DMA = dimethylammonium). The identity of the materials is confirmed using high-resolution powder X-ray diffraction, with refined unit cell parameters compared to known pure iron analogues of the same phases. The oxidation states of iron and vanadium in all samples are verified using X-ray absorption near edge structure (XANES) spectroscopy at the metal K-edges. This shows that in the two sets of materials each of the vanadium and the iron centers are present in both +2 and +3 oxidation states. The local environment and oxidation state of iron is confirmed by 57Fe Mössbauer spectrometry. Infrared and Raman spectroscopies as a function of temperature allowed the conditions for removal of extra-framework species to be identified, and the evolution of μ2-hydroxyls to be monitored. Thus calcination of the mixed-valent, mixed-metal phases [(Fe,V)III0.5(Fe,V)0.5II(BDC)(OH,F)]0.5–·0.5DMA+ yields single-phase MIL-53-type materials, (Fe,V)III(BDC)(OH,F). The iron-rich, mixed-metal MIL-53 shows structural flexibility that is distinct from either the pure Fe material or the pure V material, with a thermally induced pore opening upon heating that is reversible upon cooling. In contrast, the material with a Fe:V content of 1:1 shows an irreversible expansion upon heating, akin to the pure vanadium analogue, suggesting the presence of some domains of vanadium-rich regions that can be permanently oxidized to V(IV).