People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Raum, Kay
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024The respective and dependent effects of scattering and bone matrix absorption on ultrasound attenuation in cortical bone.citations
- 2021Anisotropic elastic properties of human cortical bone tissue inferred from inverse homogenization and resonant ultrasound spectroscopycitations
- 2020Cortical thinning and accumulation of large cortical pores in the tibia reflect local structural deterioration of the femoral neckcitations
- 2019Large cortical bone pores in the tibia are associated with proximal femur strengthcitations
- 2019Acoustic diffusion constant of cortical bone: Numerical simulation study of the effect of pore size and pore density on multiple scattering.citations
- 2016Multimodal correlative investigation of the interplaying micro-architecture, chemical composition and mechanical properties of human cortical bone tissue reveals predominant role of fibrillar organization in determining microelastic tissue properties.citations
- 2015Distribution of mesoscale elastic properties and mass density in the human femoral shaft.citations
- 2014Ultrasound to assess bone quality.citations
- 20143D Raman mapping of the collagen fibril orientation in human osteonal lamellae.citations
- 2014On the elastic properties of mineralized turkey leg tendon tissue: multiscale model and experiment.citations
- 2014Modeling of femoral neck cortical bone for the numerical simulation of ultrasound propagation.citations
- 2014Ultrasound biomicroscopy (UBM) and scanning acoustic microscopy (SAM) for the assessment of hernia mesh integration: a comparison to standard histology in an experimental model.citations
- 2014Multiscale, Converging Defects of Macro-Porosity, Microstructure and Matrix Mineralization Impact Long Bone Fragility in NF1citations
- 2009Assessment of Microelastic Properties of Bone Using Scanning Acoustic Microscopy: A Face-to-Face Comparison with Nanoindentation
Places of action
Organizations | Location | People |
---|
article
Assessment of Microelastic Properties of Bone Using Scanning Acoustic Microscopy: A Face-to-Face Comparison with Nanoindentation
Abstract
The current work aimed at comparing, on site-matched cortical bone tissue, the micron-level elastic modulus Ea derived from 200 MHz-scanning acoustic microscopy (SAM) acoustic impedance (Z) combined with bone mineral density (assessed by synchrotron radiation microcomputed tomography, SR-µCT) to nanoindentation modulus En. A good correlation was observed between En and Z (R2=0.67, p<0.0001, root mean square error RMSE=1.9 GPa). The acoustical elastic modulus Ea derived from Z showed higher values of E compared to nanoindentation moduli. We assumed that the discrepancy between Ea and En values may likely be due to the fixed assumed value of Poisson's ratio while values comprised between 0.15 and 0.45 have been reported in the literature. Despite these differences, a highly significant correlation between Ea and En was found (R2=0.66, p<0.001, RMSE=1.8 GPa) suggesting that SAM can reliably be used as a modality to quantitatively map the local variations of tissue-level bone elasticity.