Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Laetitia, Van Schoors

  • Google
  • 5
  • 6
  • 24

Université Gustave Eiffel

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2018Antioxidant properties of flax fibers in polyethylene matrix composites20citations
  • 2017Influence des conditions de fabrication sur les propriétés mécaniques et physicochimiques d’un composite lin/époxy unidirectionnel citations
  • 2017Development of a thermocompression manufacturing process adapted to flax-epoxy laminated compositescitations
  • 2008Durability of Aramid Ropes in a Marine Environmentcitations
  • 2008Durability of Aramid Ropes in a Marine Environment4citations

Places of action

Chart of shared publication
Gueguen, Minerbe Marielle
1 / 1 shared
Sandrine, Moscardelli
1 / 1 shared
Davies, Peter
2 / 131 shared
Hajer, Rabii
1 / 1 shared
Loic, Dussud
1 / 1 shared
Guillaume, Derombise
1 / 5 shared
Chart of publication period
2018
2017
2008

Co-Authors (by relevance)

  • Gueguen, Minerbe Marielle
  • Sandrine, Moscardelli
  • Davies, Peter
  • Hajer, Rabii
  • Loic, Dussud
  • Guillaume, Derombise
OrganizationsLocationPeople

document

Influence des conditions de fabrication sur les propriétés mécaniques et physicochimiques d’un composite lin/époxy unidirectionnel

  • Laetitia, Van Schoors
Abstract

This study focused on the development of a manufacturing process of laminated composites made from DGEBA epoxy matrix and flax fibers. The aim is to produce a material with good and low dispersed mechanical properties. Thermocompression is the chosen manufacturing method because it enables the production of composite with high fiber content. We used separated matrix and reinforcement, and not a prepreg, to fully control each component of our composites. Several curing cycle parameters have been tested in order to optimize mechanical properties and processing time. A multi-scale analyze has been carried on the produced composites in order to quantify the range of properties’ modifications. The article displays the influences of different process parameters, such as curing temperature and conditioning of fibers, on composites properties.

Topics
  • impedance spectroscopy
  • laser emission spectroscopy
  • composite
  • curing