Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lancry, Mathieu

  • Google
  • 1
  • 8
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Glass-ceramics for engineering optical properties and nonlinear optics for engineering glass ceramicscitations

Places of action

Chart of shared publication
Fargin, Evelyne
1 / 32 shared
Dussauze, Marc
1 / 50 shared
Rodriguez, Vincent
1 / 31 shared
Petit, Yannick
1 / 26 shared
Poumellec, Bertrand
1 / 17 shared
Canioni, Lionel
1 / 34 shared
Marquestaut, Nicolas
1 / 3 shared
Cardinal, Thierry
1 / 87 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Fargin, Evelyne
  • Dussauze, Marc
  • Rodriguez, Vincent
  • Petit, Yannick
  • Poumellec, Bertrand
  • Canioni, Lionel
  • Marquestaut, Nicolas
  • Cardinal, Thierry
OrganizationsLocationPeople

booksection

Glass-ceramics for engineering optical properties and nonlinear optics for engineering glass ceramics

  • Fargin, Evelyne
  • Dussauze, Marc
  • Rodriguez, Vincent
  • Petit, Yannick
  • Poumellec, Bertrand
  • Canioni, Lionel
  • Marquestaut, Nicolas
  • Cardinal, Thierry
  • Lancry, Mathieu
Abstract

The investigation of nonlinear optical (NLO) properties is closely linked to the discovery of Lasers (Light Amplification by Stimulated Emission of Radiation) by Theodore Harold Maiman in 1960. The area of research has been devoted first naturally to non centrosymmetric crystals (LiNbO3, KDP, BBO, etc.). In 1961, Franken revealed for the first time on a quartz crystal the second harmonic generation [1037]. This discovery opened a new pathway for numerous innovative applications such as frequency conversion (second and third harmonic or sum and difference of frequency) starting from the interaction of monochromatic light sources and high fluence laser interaction with material. In the specific case of glasses, due to their isotropic nature, they do not provide second order nonlinearity such as a second harmonic signal, which forms the base of optical effect such as electro-optical effect (Pockels).

Topics
  • impedance spectroscopy
  • glass
  • glass
  • isotropic
  • ceramic