People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mcgugan, Malcolm
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2025Acoustic emission data analytics on delamination growth in a wind turbine blade under full-scale cyclic testingcitations
- 2024Understanding Fatigue Delamination Crack Growth in a Wind Turbine Rotor Blade Through an Element Testing
- 2021Fatigue testing of a 14.3 m composite blade embedded with artificial defects – damage growth and structural health monitoringcitations
- 2018Impact fatigue damage of coated glass fibre reinforced polymer laminatecitations
- 2018Impact fatigue damage of coated glass fibre reinforced polymer laminatecitations
- 2018Development of Single Point Impact Fatigue Tester (SPIFT)
- 2018Development of Single Point Impact Fatigue Tester (SPIFT)
- 2016Fibre Bragg Grating Sensor Signal Post-processing Algorithm: Crack Growth Monitoring in Fibre Reinforced Plastic Structurescitations
- 2015Crack Detection in Fibre Reinforced Plastic Structures Using Embedded Fibre Bragg Grating Sensors: Theory, Model Development and Experimental Validationcitations
- 2015Structural health monitoring method for wind turbine trailing edge: Crack growth detection using Fibre Bragg Grating sensor embedded in composite materials
- 2015Crack Growth Monitoring by Embedded Optical Fibre Bragg Grating Sensors: Fibre Reinforced Plastic Crack Growing Detectioncitations
- 2015Embedded Fibre Bragg Grating Sensor Response Model: Crack Growing Detection in Fibre Reinforced Plastic Materialscitations
- 2015Damage tolerant design and condition monitoring of composite material and bondlines in wind turbine blades: Failure and crack propagation
- 2015Crack growth monitoring in composite materials using embedded optical Fiber Bragg Grating sensor
- 2013Bondlines – Online blade measurements (October 2012 and January 2013)
- 2011Development and Testing of an Acoustoultrasonic Inspection Device for Condition Monitoring of Wind Turbine Blades
- 2010Full Scale Test of SSP 34m blade, edgewise loading LTT:Data Report 1
- 2008Full Scale Test of a SSP 34m boxgirder 2:Data report
- 2008Fundamentals for remote condition monitoring of offshore wind turbines
- 2008Full Scale Test of a SSP 34m boxgirder 2
- 2006Detecting and identifying damage in sandwich polymer composite by using acoustic emission
Places of action
Organizations | Location | People |
---|
document
Structural health monitoring method for wind turbine trailing edge: Crack growth detection using Fibre Bragg Grating sensor embedded in composite materials
Abstract
In this article a novel method to assess a crack growing/damage event in composite material using Fibre Bragg Grating (FBG) sensors embedded in a host material and its application into a composite material structure, Wind Turbine Trailing Edge, is presented.<br/>A Structure-Material-FBG model was developed, which simulates the FBG sensor output response, when embedded in a host material, during a crack growing/damage event. This Structure-Material-FBG model provides a tool to analyse the application of this monitoring technique in other locations/structures, by predicting the sensor output and deciding, based on this, the optimal sensor distribution/configuration.<br/>All the different features in the fracture (cracking) mechanism that can induce a change in the FBG response were identified. With this, it was possible to identify specific phenomenon that will only happen in the proximity of a crack, such as compression fields ahead the crack or non-uniform strain fields, and then identify the presence of such damage in the structure. Experimental tests were conducted to fully characterize this concept and support the model. Double Cantilever Beams (DCB), made with two glass fibre beams glued with structural adhesive, were instrumented with one array of FBG sensors embedded into the host material, and digital image correlation technique was used to determine the presence of the specific phenomena caused by the crack, and to correlate with the FBG sensor.