People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mcgugan, Malcolm
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2025Acoustic emission data analytics on delamination growth in a wind turbine blade under full-scale cyclic testingcitations
- 2024Understanding Fatigue Delamination Crack Growth in a Wind Turbine Rotor Blade Through an Element Testing
- 2021Fatigue testing of a 14.3 m composite blade embedded with artificial defects – damage growth and structural health monitoringcitations
- 2018Impact fatigue damage of coated glass fibre reinforced polymer laminatecitations
- 2018Impact fatigue damage of coated glass fibre reinforced polymer laminatecitations
- 2018Development of Single Point Impact Fatigue Tester (SPIFT)
- 2018Development of Single Point Impact Fatigue Tester (SPIFT)
- 2016Fibre Bragg Grating Sensor Signal Post-processing Algorithm: Crack Growth Monitoring in Fibre Reinforced Plastic Structurescitations
- 2015Crack Detection in Fibre Reinforced Plastic Structures Using Embedded Fibre Bragg Grating Sensors: Theory, Model Development and Experimental Validationcitations
- 2015Structural health monitoring method for wind turbine trailing edge: Crack growth detection using Fibre Bragg Grating sensor embedded in composite materials
- 2015Crack Growth Monitoring by Embedded Optical Fibre Bragg Grating Sensors: Fibre Reinforced Plastic Crack Growing Detectioncitations
- 2015Embedded Fibre Bragg Grating Sensor Response Model: Crack Growing Detection in Fibre Reinforced Plastic Materialscitations
- 2015Damage tolerant design and condition monitoring of composite material and bondlines in wind turbine blades: Failure and crack propagation
- 2015Crack growth monitoring in composite materials using embedded optical Fiber Bragg Grating sensor
- 2013Bondlines – Online blade measurements (October 2012 and January 2013)
- 2011Development and Testing of an Acoustoultrasonic Inspection Device for Condition Monitoring of Wind Turbine Blades
- 2010Full Scale Test of SSP 34m blade, edgewise loading LTT:Data Report 1
- 2008Full Scale Test of a SSP 34m boxgirder 2:Data report
- 2008Fundamentals for remote condition monitoring of offshore wind turbines
- 2008Full Scale Test of a SSP 34m boxgirder 2
- 2006Detecting and identifying damage in sandwich polymer composite by using acoustic emission
Places of action
Organizations | Location | People |
---|
report
Bondlines – Online blade measurements (October 2012 and January 2013)
Abstract
Some local deformations in an operating Wind Turbine blade (V80) have been measured during October 2012. Displacement and load values generated between the trailing edge panels at blade radius R9.2m, R10,2m, and R11,2m were obtained. A fluctuating loading of between 100 - 200N existed when the two panels were connected, and with a displacement of between 6.5 - 10mm when the panels were free to flex as they do in normal operating conditions. Shear distortion within the main loading spar of the blade (at approximately R10m) showed a fluctuating cross beam shear distortion of about 9mm. <br/>The trailing edge displacement was re-measured (during January 2013) following a reinforcement of the blade to prevent trailing edge distortion. This trial showed that the new displacement values were below 1mm during similar operating conditions. <br/>This report describes the planning for and procurement of hardware for the on-site measurements. The data output is then summarised. The full data files will be used to improve models and sub-component testing of these structures, as well as the continuing development of the reinforcement approaches designed to prolong structural life.