People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Butaud, Pauline
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2022Shape memory through contact : introduction of magnetofriction – shape memory polymers (MF-SMPs)
- 2022Development of a magneto-mechanical bench and experimental characterization of magneto-rheological elastomerscitations
- 2022In situ damping identification of plant fiber composites using dynamic grid nanoindentationcitations
- 2022On the use of thermomechanical couplings for the design of adaptive structures
- 2022Viscoelastic properties of plant fibers - Dynamic analysis and nanoindentation tests
- 2021Influence of water aging on the damping properties of plant fiber composites
- 2021Damping behavior of plant fiber composites : A review
- 2021Damping behavior of hemp and flax fibre reinforced greenpoxy composites
- 2020Real-time tuning of stiffness and damping properties of laminate composites
- 2020Towards a better understanding of the CMUTs potential for SHMapplications
- 2020In-core heat distribution control for adaptive damping and stiffness tuning of composite structures
- 2020Magnetic and dynamic mechanical properties of a highly coercive MRE based on NdFeB particles and a stiff matrix
- 2019Temperature control of a composite core for adaptive stiffness and damping
- 2019CMUT sensors based on circular membranes array for SHM applications
- 2019Black hole damping control with a thermally-driven shape memory polymer
- 2019Adaptive damping and stiffness control of composite structures: an experimental illustration
- 2018Identification of the viscoelastic properties of the tBA/PEGDMA polymer from multi-loading modes conducted over a wide frequency–temperature scale range
- 2017Design of thermally adaptive composite structures for damping and stiffness controlcitations
- 2016Sandwich structures with tunable damping properties: on the use of shape memory polymer as viscoelastic core
- 2015Investigations on the frequency and temperature effects on mechanical properties of a shape memory polymer (Veriflex)
- 2015Contribution to using shape memory polymers for the control of structural damping
- 2013Static and Dynamic Thermo Mechanical Characterization of a Bio-Compatible Shape Memory Polymer
Places of action
Organizations | Location | People |
---|
document
CMUT sensors based on circular membranes array for SHM applications
Abstract
A MEMS sensor dedicated to SHM applications is presented. The MEMS is made of a Capacitive Micromachined Ultrasonic Transducer (CMUT) chip composed of circular membranes array. The radius of the membranes vary between 50 µm and 250 µm and hence the associated resonance frequencies between 80 kHz and 2 MHz. A wide frequency bandwidth is then available for acoustic measurements. A testing campaign is conducted in order to characterize the MEMS sensor's behavior when subjected to single-frequency and broadband excitation stimuli. The single-frequency excitations are produced with specific piezoelectric transducers from 300 kHz to 800 kHz. The Fast Fourier Transform (FFT) of the measured signal from the CMUT is centered as expected on the excitation frequency. The broadband excitation is obtained with a pencil lead break. In this case, the FFT of the measured signal is centered on the resonance frequency of the membrane. These characterizations point out the DC bias voltage applied to the CMUT as a major parameter for controlling the sensitivity of the sensor. The CMUT sensor proves to be sufficiently sensitive to monitor these sources. This work highlights the relevant prospective capacities of the CMUT sensor to collect data in structural health monitoring applications. This sensor technology could be externally deployed, or even integrated into a composite structure, in order to monitor the structure by the CMUT detection, either by active ultrasound tests or by passive acoustic emission.