People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rasilo, Paavo
Tampere University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 20242-D Axisymmetric FEM-Based Approach for Identifying Dimension- and Frequency-Independent Material Parameters of Mn-Zn Ferritescitations
- 2023Eddy-Current Loss Model for Soft Magnetic Composite Materials Considering Particle Size Distributioncitations
- 2022Finite element level validation of an anisotropic hysteresis model for non-oriented electrical steel sheetscitations
- 20222D Analytical Model for Computing Eddy-Current Loss in Nonlinear Thick Steel Laminationscitations
- 20222D Analytical Model for Computing Eddy-Current Loss in Nonlinear Thick Steel Laminationscitations
- 2020Representation of anisotropic magnetic characteristic observed in a non-oriented silicon steel sheetcitations
- 2020Analysis of the Magneto-Mechanical Anisotropy of Steel Sheets in Electrical Applicationscitations
- 20163-D Eddy Current Modelling of Steel Laminations to Analyze Edge Effects
- 2016Modeling and experimental verification of magneto‐mechanical energy harvesting device based on construction steel
- 2015Analytical model for magnetic anisotropy of non-oriented steel sheetscitations
- 2015Homogenization Technique for Axially Laminated Rotors of Synchronous Reluctance Machinescitations
- 2014Segregation of iron losses from rotational field measurements and application to electrical machinecitations
- 2013Iron losses, magnetoelasticity and magnetostriction in ferromagnetic steel laminationscitations
Places of action
Organizations | Location | People |
---|
conferencepaper
3-D Eddy Current Modelling of Steel Laminations to Analyze Edge Effects
Abstract
The correct estimation of iron losses is still a challenging task in the numerical analysis of electrical machines. For estimation of eddy current losses, various formulations based on 1-D and 2-D models are mentioned in literature which neglect effect of current density at the edges of steel laminations. This paper<br/>compares such simplified 1-D/2-D eddy current loss model with a 3-D model to analyze the effect of edges on eddy current loss calculation. Thickness of the lamination along with frequency of field excitation were determined where considerable deviation in eddy current losses among loss models is observed due to edge assumption.