Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Moonens, Marc

  • Google
  • 3
  • 8
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2019Analytical Modeling of Embedded Load Sensing Using Liquid-Filled Capillaries Integrated by Metal Additive Manufacturing5citations
  • 2019On the Influence of Capillary-Based Structural Health Monitoring on Fatigue Crack Initiation and Propagation in Straight Lugs3citations
  • 2017Effect of Surface Roughness on Fatigue Crack Initiation in Additive Manufactured components with Integrated Capillary for SHM Applicationcitations

Places of action

Chart of shared publication
Ertveldt, Julien
2 / 16 shared
Guillaume, Patrick
3 / 40 shared
Hinderdael, Michaël
3 / 22 shared
Baere, Dieter De
3 / 26 shared
Wyart, Eric
1 / 3 shared
Arroud, Galid
1 / 5 shared
Jardon, Zoé
1 / 12 shared
Vafadari, Reza
1 / 3 shared
Chart of publication period
2019
2017

Co-Authors (by relevance)

  • Ertveldt, Julien
  • Guillaume, Patrick
  • Hinderdael, Michaël
  • Baere, Dieter De
  • Wyart, Eric
  • Arroud, Galid
  • Jardon, Zoé
  • Vafadari, Reza
OrganizationsLocationPeople

document

Effect of Surface Roughness on Fatigue Crack Initiation in Additive Manufactured components with Integrated Capillary for SHM Application

  • Vafadari, Reza
  • Guillaume, Patrick
  • Moonens, Marc
  • Hinderdael, Michaël
  • Baere, Dieter De
Abstract

Additive Manufacturing is considered as one of the most promising manufacturing technologies currently studied, but the unrepeatable material behaviour and lack of proper process control still form major challenges to become widely used in aeronautical applications. Structural Health Monitoring (SHM) systems can ensure safe operation by monitoring the structural integrity of the additive manufactured components. In that perspective, a SHM strategy for additive manufactured components is proposed whereby capillaries are integrated during the production of the component. Being pressurized at a pressure different than the ambient conditions and by continuously monitoring the capillary pressure, one can derive the presence of fatigue cracks that have breached the capillary: the crack forming the connection between the outside and the capillary network. However, fatigue strength and fatigue crack initiation must not be altered by the presence of the capillaries of the SHM system. The current work analyses the effect of the presence of printed and drilled capillaries on the fatigue strength and initiation location in conventional and additive manufactured Ti6Al4V samples. All samples are tested using 4point bending tests. Despite the fact that additive manufactured samples without capillary outperformed conventional material in terms of fatigue strength, it was observed that the presence of printed capillaries reduced the fatigue strength of the specimen. Analysis has shown that the capillary surface roughness leads to stress concentrations which alter the fatigue initiation location to the capillary surface and reduce its fatigue strength.

Topics
  • impedance spectroscopy
  • surface
  • crack
  • strength
  • fatigue
  • bending flexural test
  • forming
  • additive manufacturing