Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pietroni, Nico

  • Google
  • 5
  • 13
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2024Automated Shotcrete2citations
  • 2022Design And Construction Of a Bending-Active Plywood Structure: The Flexmaps Pavilion4citations
  • 2020Automated design and analysis of reinforced and post-tensioned glass shells1citations
  • 2020Automated design and analysis of reinforced and post-tensioned glass shells1citations
  • 2019Structurally optimized shellscitations

Places of action

Chart of shared publication
Isaac, Geoff
1 / 1 shared
Xie, Mike
1 / 1 shared
Calleja, Teresa Vidal
1 / 1 shared
Paul, Gavin
1 / 2 shared
Nicholas, Paul
1 / 21 shared
Muntoni, Alessandro
1 / 1 shared
Ponchio, Federico
1 / 1 shared
Cignoni, Paolo
2 / 6 shared
Laccone, Francesco
2 / 4 shared
Callieri, Marco
1 / 1 shared
Alderighi, Thomas
1 / 1 shared
Froli, Maurizio
1 / 5 shared
Malomo, Luigi
1 / 2 shared
Chart of publication period
2024
2022
2020
2019

Co-Authors (by relevance)

  • Isaac, Geoff
  • Xie, Mike
  • Calleja, Teresa Vidal
  • Paul, Gavin
  • Nicholas, Paul
  • Muntoni, Alessandro
  • Ponchio, Federico
  • Cignoni, Paolo
  • Laccone, Francesco
  • Callieri, Marco
  • Alderighi, Thomas
  • Froli, Maurizio
  • Malomo, Luigi
OrganizationsLocationPeople

document

Structurally optimized shells

  • Pietroni, Nico
Abstract

Shells, i.e., objects made of a thin layer of material following a surface, are among the most common structures in use. They are highly efficient, in terms of material required to maintain strength, but also prone to deformation and failure. We introduce an efficient method for reinforcing shells, that is, adding material to the shell to increase its resilience to external loads. Our goal is to produce a reinforcement structure of minimal weight. It has been demonstrated that optimal reinforcement structures may be qualitatively different, depending on external loads and surface shape. In some cases, it naturally consists of discrete protruding ribs; in other cases, a smooth shell thickness variation allows to save more material. Most previously proposed solutions, starting from classical Michell trusses, are not able to handle a full range of shells (e.g., are restricted to self-supporting structures) or are unable to reproduce this range of behaviors, resulting in suboptimal structures. We propose a new method that works for any input surface with any load configurations, taking into account b oth in-plane (tensile/compression) and out-of-plane (bending) forces. By using a more precise volume model, we are capable of producing optimized structures with the full range of qualitative behaviors. Our method includes new algorithms for determining the layout of reinforcement structure elements, and an efficient algorithm to optimize their shape, minimizing a non-linear non-convex functional at a fraction of the cost and with better optimality compared to standard solvers. We demonstrate the optimization results for a variety of shapes, and the improvements it yields in the strength of 3D-printed objects.

Topics
  • impedance spectroscopy
  • surface
  • strength