People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Soize, Christian
Université Gustave Eiffel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2023Sensitivity of a granular homogeneous and isotropic second-gradient continuum model with respect to uncertainties
- 2023Sensitivity with respect to uncertainties of a particle-based homogeneous and isotropic second-gradient continuum model
- 2019Stochastic modeling and identification of an hyperelastic constitutive model for laminated compositescitations
- 2016Stochastic continuum modeling of random interphases from atomistic simulations. Application to a polymer nanocompositecitations
- 2015Modélisation stochastique continue et identification inverse d'interphases aléatoires à partir de simulations atomistiques
- 2015Stochastic modeling for statistical inverse identification in mechanics of materials
- 2015Stochastic representations and statistical inverse identification for uncertainty quantification in computational mechanics
- 2013On the statistical dependence for the components of random elasticity tensors exhibiting material symmetry propertiescitations
- 2009Computational elastoacoustics of uncertain complex systems and experimental validation
- 2009Robust updating of computational models with uncertainties for dynamical systems
- 2009Mesoscale probabilistic models for the elasticity tensor of fiber reinforced composites: Experimental identification and numerical aspectscitations
- 2008Inverse problems in stochastic computational dynamics
- 2007Computational elastoacoustics of uncertain complex systems and experimental validation
- 2007Robust updating of computational models with uncertainties for dynamical systems
- 2007A class of tensor-valued random fields for random anisotropic elastic microstructure modeling and stochastic homogenization
- 2006A class of tensor-valued random fields for random anisotropic elastic microstructure modeling and stochastic homogenization
- 2005Vibroacoustics of a cavity coupled with an uncertain composite panel
- 2005Uncertainties in structural dynamics for composite sandwich panels
- 2005Identification et validation expérimentale d'un modèle stochastique des incertitudes en vibroacoustique d'un panneau composite.
- 2005Probabilistic models for computational stochastic mechanics and applications
- 2005Modèle thermomécanique à haute température et à rupture pour les plaques multicouches carton-plâtre-carton soumises au feu. Expériences et simulations numériques
- 2004Uncertainties in structural dynamics for composite sandwich panels
Places of action
Organizations | Location | People |
---|
conferencepaper
Probabilistic models for computational stochastic mechanics and applications
Abstract
This paper deals with the validation and industrial applications of a nonparametric probabilistic approach of model uncertainties and data uncertainties in computational dynamics for linear and nonlinear dynamical systems, for complex structures and vibroacoustic systems. The concept of the nonparametric probababilistic approach for random uncertainties due to model errors and system-parameter uncertainties is introduced. A numerical validation proving the capability of the nonparametric probabilistic approach to take into account model uncertainties is presented. Then an experimental validation is given for the dynamics of a composite sandwich panel. Finally, four industrial applications of the nonparametric probabilistic modeling of random uncertainties in comptational stochastic mechanics for complex mechanical systems are presented.