People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Khakalo, Alexey
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2023Biodegradable Cellulose Nanocomposite Substrate for Recyclable Flexible Printed Electronicscitations
- 2022Nanocellulose Removes the Need for Chemical Crosslinking in Tannin-Based Rigid Foams and Enhances Their Strength and Fire Retardancycitations
- 2021Manufacture of all-wood sawdust-based particle board using ionic liquid-facilitated fusion processcitations
- 2021Rheological behavior of high consistency enzymatically fibrillated cellulose suspensionscitations
- 2020Wood based materials with ionic liquid fusion
- 2019Anti-oxidative and UV-absorbing biohybrid film of cellulose nanofibrils and tannin extractcitations
- 2018The effect of oxyalkylation and application of polymer dispersions on the thermoformability and extensibility of papercitations
- 2018Protein-mediated interfacial adhesion in composites of cellulose nanofibrils and polylactidecitations
- 2017Layer-by-layer assembled hydrophobic coatings for cellulose nanofibril films and textiles, made of polylysine and natural wax particles
- 2017Protein Adsorption Tailors the Surface Energies and Compatibility between Polylactide and Cellulose Nanofibrilscitations
- 2017Advanced Structures and Compositions for 3D Forming of Cellulosic Fiberscitations
- 2017Advanced Structures and Compositions for 3D Forming of Cellulosic Fibers:Dissertation
- 2016Effect of polyurethane addition on the strength, extensibility and 3D formability of paper and board
- 2016Combined mechanical and chemical modifications towards super-stretchable paper-based materials
Places of action
Organizations | Location | People |
---|
document
Layer-by-layer assembled hydrophobic coatings for cellulose nanofibril films and textiles, made of polylysine and natural wax particles
Abstract
Carbohydrate Polymers Vol.173, 392-402 ; Herein we present a simple method to render cellulosic materials highly hydrophobic while retaining their breathability and moisture buffering properties, thus allowing for their use as functional textiles. The surfaces are coated via layer-by-layer deposition of two natural components, cationic poly-L-lysine and anionic carnauba wax particles. The combination of multiscale roughness, open film structure, and low surface energy of wax colloids, resulted in long-lasting superhydrophobicity on cotton surface already after two bilayers. Atomic force microscopy, interference microscopy, scanning electron microscopy and X-ray photoelectron spectroscopy were used to decouple structural effects from changes in surface energy. Furthermore, the effect of thermal annealing on the coating was evaluated. The potential of this simple and green approach to enhance the use of natural cellulosic materials is discussed.