People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ly-Gagnon, D. S.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
document
B-CALM: An Open-Source GPU-based 3D-FDTD with Multi-Pole Dispersion for Plasmonics
Abstract
Numerical calculations with finite-difference time-domain (FDTD) on metallic nanostructures in a broad optical spectrum require an accurate approximation of the permittivity of dispersive materials. In this paper, we present the algorithms behind B-CALM (Belgium-California Light Machine), an open-source 3D-FDTD solver operating on Graphical Processing Units (GPUs) with multi-pole dispersion models. Our modified architecture shows a reduction in computing times for multi-pole dispersion models. We benchmark B-CALM by computing the absorption efficiency of a metallic nanosphere on a broad spectral range with a six-poles Drude-Lorentz model and compare it with Mie theory.