People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Van Erps, Jurgen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2023VCSEL wavelength tunability using controlled mechanical strain
- 2021Increasing the Microfabrication Performance of Synthetic Hydrogel Precursors through Molecular Designcitations
- 20203D direct laser writing of microstructured optical fiber tapers on single-mode fibers for mode-field conversioncitations
- 2018Ultrathin Poly-DL-Lactic Membranes for Corneal Endothelial Transplantation
- 2018Localized optical- quality doping of graphene on silicon waveguides through a TFSA- containing polymer matrixcitations
- 2016Replication of self-centering optical fiber alignment structures using hot embossingcitations
- 2016Hot-embossing replication of self-centering optical fiber alignment structures prototyped by deep proton writingcitations
- 2016Deep proton writing with 12 MeV protons for rapid prototyping of microstructures in polymethylmethacrylatecitations
- 2016Optofluidic multi-measurement system for the online monitoring of lubricant oilcitations
- 2016Design and prototyping of self-centering optical single-mode fiber alignment structurescitations
- 2015Mould insert fabrication of a single-mode fibre connector alignment structure optimized by justified partial metallizationcitations
- 2013Low-coherence interferometry with polynomial interpolation on Compute Unified Device Architectur-enabled graphics processing units
- 2013Gloss, hydrophobicity and surface texture of papers with organic nanoparticle coatings
- 2013B-Calm: An open-source multi-GPU-based 3D-FDTD with multi-pole dispersion for plasmonics
- 2010Populating multi-fiber fiberoptic connectors using an interferometric measurement of fiber tip position and facet quality
- 2010Design and fabrication of embedded micro-mirror inserts for out-of-plane coupling in PCB-level optical interconnects
- 2008Hot embossing of microoptical components prototyped by deep proton writing
- 2008Embedded Micro-Mirror inserts for optical printed circuit boards
- 2008Deep Proton Writing: A tool for rapid prototyping of polymer micro-opto-mechanical modules
- 2007Deep Proton Writing: A tool for rapid prototyping polymer micro-opto-mechanical modules
- 2006Laser Ablation of Parallel Optical Interconnect Waveguides
Places of action
Organizations | Location | People |
---|
document
Design and fabrication of embedded micro-mirror inserts for out-of-plane coupling in PCB-level optical interconnects
Abstract
Optical interconnections have gained interest over the last years, and several approaches have been presented for the integration of optics to the printed circuit board (PCB)-level. The use of a polymer optical waveguide layer appears to be the prevailing solution to route optical signals on the PCB. The most difficult issue is the efficient out-of-plane coupling of light between surface-normal optoelectronic devices (lasers and photodetectors) and PCB-integrated waveguides. The most common approach consists of using 45 degrees reflecting micro-mirrors. The micro-mirror performance significantly affects the total insertion loss of the optical interconnect system, and hence has a crucial role on the system's bit error rate (BER) characteristics. <br/>Several technologies have been proposed for the fabrication of 45 degrees reflector micro-mirrors directly into waveguides. Alternatively, it is possible to make use of discrete coupling components which have to be inserted into cavities formed in the PCB-integrated waveguides. In this paper, we present a hybrid approach where we try to combine the advantages of integrated and discrete coupling mirrors, i.e. low coupling loss and maintenance of the planararity of the top surface of the optical layer, allowing the lamination of additional layers or the mounting of optoelectronic devices. <br/> <br/>The micro-mirror inserts are designed through non-sequential ray tracing simulations, including a tolerance analysis, and subsequently prototyped with Deep Proton Writing (DPW). The DPW prototypes are compatible with mass fabrication at low cost in a wide variety of high-tech plastics. The DPW micro-mirror insert is metallized and inserted in a laser ablated cavity in the optical layer and in a next step covered with cladding material. Surface roughness measurements confirm the excellent quality of the mirror facet. An average mirror loss of 0.35-dB was measured in a receiver scheme, which is the most stringent configuration. Finally, the configuration is robust, since the mirror is embedded and thus protected from environmental contamination, like dust or moisture adsorption, which makes them interesting candidates for out-of-plane coupling in high-end boards.