Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wittig, Nina Kølln

  • Google
  • 3
  • 10
  • 25

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Underwater Fabrication of Carbon Nanotube/Coacervate Composites1citations
  • 2020Nanobeam X-ray fluorescence and diffraction computed tomography on human bone with a resolution better than 120 nm24citations
  • 2020Nanoscale 3D mapping of biomineral composition and properties in human bonecitations

Places of action

Chart of shared publication
Andersen, Amanda
1 / 5 shared
Huynh, Tan-Phat
1 / 5 shared
Bach-Gansmo, Fiona Linnea
1 / 1 shared
Birkedal, Henrik
3 / 17 shared
Rosenthal, Martin
1 / 17 shared
Kubec, Adam
1 / 3 shared
Grünewald, Tilman A.
1 / 3 shared
Niese, Sven
1 / 4 shared
Burghammer, Manfred
1 / 22 shared
Palle, Jonas
2 / 2 shared
Chart of publication period
2024
2020

Co-Authors (by relevance)

  • Andersen, Amanda
  • Huynh, Tan-Phat
  • Bach-Gansmo, Fiona Linnea
  • Birkedal, Henrik
  • Rosenthal, Martin
  • Kubec, Adam
  • Grünewald, Tilman A.
  • Niese, Sven
  • Burghammer, Manfred
  • Palle, Jonas
OrganizationsLocationPeople

document

Nanoscale 3D mapping of biomineral composition and properties in human bone

  • Wittig, Nina Kølln
  • Birkedal, Henrik
  • Palle, Jonas
Abstract

Bone has a complex hierarchical structure with structural motifs ranging from the nm-mm scale, giving rise to the unique mechanical and biological properties of bone. Many other biological materials present such hierarchical structures, which are very challenging to unravel. While the structure of human bone is well characterized down to the microscopic scale, the bone structure at the sub-100 µm is still debated with many structural and medical questions remaining unanswered. Studying this nanostructured hierarchical material at the nanoscale is challenging due to its complex 3D structure. <br/>One route to study such materials is X-ray powder diffraction computed tomography (XRD-CT) that reveals the 3D distribution of crystalline phases and X-ray fluorescence computed tomography (XRF-CT) that provides element distributions. <br/>We will present how we have used this technique at beamline P06, DESY, to map spatio/temporal variations in the biomineral across an osteon of human bone with 400 nm voxel size1. This allowed us to show that the microstructural properties of bone mineral is non-homogeneous and highly dependent on the time point at which it was laid down. <br/>Through further development of combined XRD-CT and XRF-CT, we have increased the 3D resolution of the technique below 120 nm opening the path for studying the next structural regime in bone2. <br/>With upgraded synchrotron sources, fast scanning motors, and high quality sample stages, the scan time of scanning XRD and XRF could decrease significantly allowing for probing larger volumes and multiple samples. This would enable new possibilities for unravelling the structure of hierarchical materials, both biological and synthetic. Γ <br/>1. Wittig, N. K.; Palle, J.; Østergaard, M.; Frølich, S.; Birkbak, M. E.; Spiers, K.; Garrevoet, J.; Birkedal, H., Bone Biomineral Properties Vary across Human Osteonal Bone. ACS Nano 2019, 13, 12949-12956.<br/>2. Palle, J.; Wittig, N. K.; Kubec, A.; Niese, S.; Rosenthal, M.; Burghammer, M.; Grünewald, T. A.; Birkedal, H., Nanobeam X-ray fluorescence and diffraction computed tomography on human bone with a resolution better than 120 nm. J. Struct. Biol. 2020, 212, 107631.<br/>

Topics
  • impedance spectroscopy
  • mineral
  • x-ray diffraction
  • crystalline phase
  • tomography
  • biological material
  • X-ray fluorescence spectroscopy