People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mendibide, Christophe
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Effect of degraded environmental conditions on the service behavior of a X65 pipeline steel not designed for hydrogen transportcitations
- 2021Corrosion and hydrogen permeation in H2S environments with O2 contamination – Part 3: the impact of acetate-buffered test solution chemistrycitations
- 2021Corrosion behavior of aluminum alloy 5754 in cement‐based matrix‐simulating nuclear waste disposal conditionscitations
- 2021Stress corrosion cracking susceptibility of P285NH and API 5L X65 steel grades in the high‐level radioactive waste repository cell conceptcitations
- 2020Impact of oxygen contamination on the electrochemical impedance spectroscopy of iron corrosion in H2S solutionscitations
- 2020Impact of oxygen contamination on the electrochemical impedance spectroscopy of iron corrosion in H2S solutionscitations
- 2019Corrosion and hydrogen permeation of low alloy steel in H2S-containing environments : the effect of test buffer solution chemistry
- 2019Corrosion and hydrogen permeation of low alloy steel in H2S-containing environments : the effect of test buffer solution chemistry
- 2019EIS study of iron and steel corrosion in aqueous solutions at various concentrations of dissolved H2S : impact of oxygen contamination.
- 2019EIS study of iron and steel corrosion in aqueous solutions at various concentrations of dissolved H2S : impact of oxygen contamination.
- 2019Corrosion and Hydrogen Permeation in H2S Environments with O2 Contamination, Part 2: Impact of H2S Partial Pressurecitations
- 2019Corrosion and Hydrogen Permeation in H2S Environments with O2 Contamination, Part 2: Impact of H2S Partial Pressurecitations
- 2018Electrochemical impedance spectroscopy of iron corrosion in H 2 S solutionscitations
- 2018Electrochemical impedance spectroscopy of iron corrosion in H 2 S solutionscitations
- 2018Corrosion of Pure iron and Hydrogen Permeation in the Presence of H 2 S with O 2 contamination
- 2018Corrosion of Pure iron and Hydrogen Permeation in the Presence of H 2 S with O 2 contamination
- 2018Corrosion of pure iron and hydrogen permeation in the presence of H2S with O2 contamination
- 2018Electrochemical study of oxygen impact on corrosion and hydrogen permeation of Armco iron in the presence of H 2 S
- 2018Electrochemical impedance spectroscopy of iron corrosion in H2S solutions
- 2017Impact of Oxygen on Corrosion and Hydrogen Permeation of Pure iron in the Presence of H2S
- 2017Impact of Oxygen on Corrosion and Hydrogen Permeation of Pure iron in the Presence of H2S
- 2017Impact of Oxygen on Corrosion and Hydrogen Permeation of Pure iron in the Presence of H2S
- 2008Raman mapping of corrosion products formed onto spring steels during salt spray experiments. A correlation between the scale composition and the corrosion resistancecitations
Places of action
Organizations | Location | People |
---|
document
Electrochemical study of oxygen impact on corrosion and hydrogen permeation of Armco iron in the presence of H 2 S
Abstract
H 2 S corrosion of mild steel is a recurrent issue in the oil and gas industry. Many studies related to the corrosion and hydrogen permeation of steel in an H 2 S containing environment have been made during the past decades with the intent of improving the knowledge and the prevention of economic loss. Since H 2 S is also a hydrogen entry promoter, lots of studies are also dedicated to the understanding of H 2 S cracking. Although it is generally accepted to avoid oxygen contamination in such a medium, there is a lack of research concerning its effect on the corrosion and hydrogen charging of steel. In this study, the effect of oxygen on corrosion and hydrogen charging of steels in an H 2 S containing environment is studied using Electrochemical Impedance Spectroscopy (EIS). An equivalent electrical circuit has been built according to SEM observations, literature research and experimental results. Using this equivalent electrical circuit, experimental data was analyzed and the average corrosion rates were deduced and found to be in good agreement with corrosion rates obtained by weight loss measurements. Furthermore, the evolution of fitting parameters (double layer capacity, charge transfer resistance, diffusion impedance, etc.) was found to be in good agreement with the real physical meaning of such parameters in the given conditions. This research contributes to the explanation of the mechanism behind the high corrosion rate observed in an H 2 S environment polluted with traces of oxygen.