People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Fages, Jacques
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2023Foaming of PLA biocomposites by supercritical CO2 assisted extrusion process
- 2023Foaming of PLA biocomposites by supercritical CO2 assisted extrusion process
- 2021PLA-based biocomposites foaming by supercritical CO2 assisted batch process
- 2021PLA-based biocomposites foaming by supercritical CO2 assisted batch process
- 2021Blending and foaming thermoplastic starch with poly (lactic acid) by CO 2 ‐aided hot melt extrusioncitations
- 2021Foaming of PLA-based Biocomposites by Supercritical CO2 Assisted Batch Process : Effect of Processing and Cellulose Fibres on Foam Microstructure
- 2021Foaming of PLA-based Biocomposites by Supercritical CO2 Assisted Batch Process : Effect of Processing and Cellulose Fibres on Foam Microstructure
- 2017Modelling Nucleation and Cell Size During the Continuous Process of Extrusion Assisted by Supercritical CO 2
- 2016Characterisation of natural fibre reinforced PLA foams prepared by supercritical CO 2 assisted extrusioncitations
- 2012Use of supercritical CO2-aided and conventional melt extrusion for enhancing the dissolution rate of an active pharmaceutical ingredientcitations
- 2011On-line rheological measurement of a binary mixture polymer/sc-CO2 in an extruder
- 2011New challenges in polymer foaming: A review of extrusion processes assisted by supercritical carbon dioxidecitations
- 2010Biosourced polymer foam production using a (SC CO2) -assisted extrusion process
- 2008A new supercritical co-injection process to coat microparticlescitations
- 2008Application of the Markov chain theory for modelling residence time distribution in a single screw extruder
- 2007Microencapsulation by a solvent-free supercritical fluid process : use of density, calorimetric, and size analysis to quantify and qualify the coatingcitations
- 2004A new test for cleaning efficiency assessment of cleaners for hard surfacescitations
- 2004Supercritical carbon dioxide : an efficient tool for the production of ultra-fine particles for the food and pharmaceutical industries
- 2002Extraction and precipitation particle coating using supercritical CO2citations
Places of action
Organizations | Location | People |
---|
conferencepaper
Application of the Markov chain theory for modelling residence time distribution in a single screw extruder
Abstract
International audience ; A Markov chain model is proposed for modelling residence time distribution of a tracer flowing together with a polymer through a single screw extruder, which has been designed for polymer extrusion with injection of supercritical CO2. The model has two dimensions and takes into consideration different velocity profiles of the flowing polymer between the screw and the barrel wall. In addition, the model allows obtaining the system response on any testing signal as unit step, Dirac or sinusoidal functions.In this work, the influence of the barrel temperature is considered. Experimental results of residence time distribution are given at different temperatures. A procedure of the model parameter identification from experiments was proposed. Within the range of working temperatures tested, a linear dependence of the velocity profile parameters was used to fit the experimental and model data.