People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kofman, Wlodek W.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2017 Interior of 67P/C-G comet as seen by CONSERT bistatic radar on Rosetta
- 2016Cosmochemical implications of CONSERT permittivity characterization of 67P/CG
- 2016An interpretation of the CONSERT and SESAME-PP results based on new permittivity measurements of porous water ice and ice-basaltic/organic dust mixtures suggests an increase of porosity with depth in 67P
- 2016Looking at Comet 67P Sub-surface in the Vicinity of Abydos
- 2016Characterizing the interior of 67P in the vicinity of Abydos
- 2016Cosmochemical implications of CONSERT permittivity characterization of 67P/C-G
- 2016Heterogeneities of 67P nucleus seen by CONSERT in the vicinity of Abydos
- 2016Mineralogical Implications of CONSERT Permittivity Characterization of 67P
- 2016Effect of meter-scale heterogeneities inside 67P nucleus on CONSERT data
- 2015Insights gained from Data Measured by the CONSERT Instrument during Philae's Descent onto 67P/C-G's surface
- 2015Broadband permittivity measurements on porous planetary regoliths simulants, in relation with the Rosetta mission to 67P/C-G
- 2015CONSERT Radar Investigations of the Shallow Subsurface of Comet 67P, in the Vicinity of the Philae Lander
- 2015Broadband Permittivity Measurements on Porous Planetary Soil Simulants, in Relation with the Rosetta Mission
- 2015The CONSERT Instrument during Philae's Descent onto 67P/C-G’s surface: Insights on Philae’s Attitude and the Surface Permittivity Measurements at the Agilkia-Landing-Site
- 2015Revealing the Possible Existence of a Near-Surface Gradient in Local Properties of 67P/Churyumov-Gerasimenko Nucleus Through CONSERT Measurements
- 2015The interior of 67P/C-G nucleus revealed by CONSERT measurements and simulations
- 2014Revealing the properties of Chuyurmov-Gerasimenko's shallow sub-surface through CONSERT's measurements at grazing angles
- 2009Comet nuclei primordial aggregation effects on their internal structure
- 2008Imaging of the Internal Structure of Comet 67P/Churyumov-Gerasimenko from Radiotomography CONSERT Data (Rosetta Mission) through spectral techniques
- 2008Comet nuclei aggregation and thermal simulations to prepare the Rosetta mission
- 2007Imaging of the Internal Structure of Comet 67P/Churyumov-Gerasimenko from Radiotomography CONSERT Data by Using Grid Computing Techniques (Rosetta Mission).
Places of action
Organizations | Location | People |
---|
document
Characterizing the interior of 67P in the vicinity of Abydos
Abstract
Since the arrival of Rosetta at comet 67P, numerous pictures have been delivered by the cameras onboard both the main spacecraft and the Philae lander. They revealed, at the nucleus' surface and inside the walls of the deep pits, few-meters scale repeating structures, thus providing hints about the internal structure of the nucleus, and suggesting that primordial 'cometesimals' may be objects around 3m in size.The CONSERT (Comet Nucleus Sounding Experiment by Radiowave Transmission) experiment is a radar that has been designed to specifically sound the interior of the nucleus and to provide information on the nucleus internal structure. The work presented here is based on the CONSERT data collected during the First Science Sequence (FSS) and marginally during Philae’s Separation Descent and Landing (SDL) for comparison.During FFS, the smaller lobe of the nucleus in the vicinity of Abydos has been actually sounded by CONSERT’s electromagnetic waves at 90 MHz with a spatial resolution around 10 m. The propagation delays measured during FSS are consistent with a very low bulk permittivity value for the investigated cometary material, which confirms the high porosity of the nucleus. The sharp shape of the received pulses indicates that the electromagnetic waves suffered weak scattering when propagating through the nucleus. This suggests that the sounded part nucleus is thus fairly homogeneous on a spatial scale of tens of meters.We will present further results on the variation of the CONSERT’s pulse shape transmitted through the small lobe of the nucleus. For a more accurate analysis and interpretation of the data, we split the FSS data into two distinct sets corresponding to soundings performed West and East of Philae in order to investigate potential differences. Tentative interpretation in terms of nucleus internal structure based on propagation simulations performed in non-homogeneous nucleus numerical models will be presented.