Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gall, Alice Le

  • Google
  • 3
  • 56
  • 155

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2021Science Goals and Objectives for the Dragonfly Titan Rotorcraft Relocatable Lander155citations
  • 2016An interpretation of the CONSERT and SESAME-PP results based on new permittivity measurements of porous water ice and ice-basaltic/organic dust mixtures suggests an increase of porosity with depth in 67Pcitations
  • 2016Plasma properties at 67P/Churyumov-Gerasimenko: a comparision between PP-SESAME/Philae/Rosetta and RPC/MIP/Rosettacitations

Places of action

Chart of shared publication
Sabouroux, Pierre
1 / 13 shared
Lethuillier, Anthony
2 / 9 shared
Encrenaz, Pierre
1 / 8 shared
Thomas, Nicolas
1 / 6 shared
Poch, Olivier
1 / 5 shared
Kofman, Wlodek W.
1 / 21 shared
Ciarletti, Valérie
1 / 34 shared
Neves, Luisa
1 / 2 shared
Brouet, Yann
1 / 9 shared
Herique, Alain
1 / 17 shared
Pommerol, Antoine
1 / 6 shared
Levasseur-Regourd, Anny Chantal
1 / 30 shared
Hamelin, Michel
1 / 13 shared
Henri, Pierre
1 / 4 shared
Lebreton, Jean Pierre
1 / 1 shared
Fischer, Hans-Herbert
1 / 3 shared
Ciarletti, Valerie
1 / 2 shared
Grard, Réjean
1 / 6 shared
Seidensticker, Klaus
1 / 1 shared
Caujolle-Bert, Sylvain
1 / 6 shared
Schmidt, Walter
1 / 4 shared
Vallières, Xavier
1 / 3 shared
Chart of publication period
2021
2016

Co-Authors (by relevance)

  • Sabouroux, Pierre
  • Lethuillier, Anthony
  • Encrenaz, Pierre
  • Thomas, Nicolas
  • Poch, Olivier
  • Kofman, Wlodek W.
  • Ciarletti, Valérie
  • Neves, Luisa
  • Brouet, Yann
  • Herique, Alain
  • Pommerol, Antoine
  • Levasseur-Regourd, Anny Chantal
  • Hamelin, Michel
  • Henri, Pierre
  • Lebreton, Jean Pierre
  • Fischer, Hans-Herbert
  • Ciarletti, Valerie
  • Grard, Réjean
  • Seidensticker, Klaus
  • Caujolle-Bert, Sylvain
  • Schmidt, Walter
  • Vallières, Xavier
OrganizationsLocationPeople

document

An interpretation of the CONSERT and SESAME-PP results based on new permittivity measurements of porous water ice and ice-basaltic/organic dust mixtures suggests an increase of porosity with depth in 67P

  • Sabouroux, Pierre
  • Gall, Alice Le
  • Lethuillier, Anthony
  • Encrenaz, Pierre
  • Thomas, Nicolas
  • Poch, Olivier
  • Kofman, Wlodek W.
  • Ciarletti, Valérie
  • Neves, Luisa
  • Brouet, Yann
  • Herique, Alain
  • Pommerol, Antoine
  • Levasseur-Regourd, Anny Chantal
Abstract

The CONSERT bistatic radar on Rosetta and Philae sounded the interior of the small lobe of 67P/C-G at 90 MHz and determined the average of the real part of the complex permittivity (hereafter ε') to be equal to 1.27±0.05 [1,2]. The permittivity probe (PP) of the SESAME package sounded the near-surface in the 400–800 Hz range and derived a lower limit of ε' equal to 2.45±0.20 [3,4]. At the time of the measurements, the temperature was found to be below 150 K at Philae's location and expected to be close or below 100 K inside the nucleus [4-6].The complex permittivity depends of the frequency, the composition, the porosity and the temperature of the material [7,8,9]. These parameters have to be taken into account to interpret the permittivity values. The non-dispersive behavior of ε' below 150 K [9], allows us to compare the CONSERT and SESAME-PP results and to interpret their difference in terms of porosity and/or composition. For this purpose we use a semi-empirical formula obtained from reproducible permittivity measurements performed in the laboratory at 243 K on water ice particles and ice-basaltic dust mixtures [10], with a controlled porosity in the 26–91% range and dust-to-ice volumetric ratios in the 0.1–2.8 range. The influence of the presence of organic materials on ε' is also discussed based on new measurements of analogues of complex extraterrestrial organic matter [11]. Our results suggest an increase of the porosity of the small lobe of 67P with depth [11], in agreement Lethuillier et al. [4]'s conclusion using a different method.[1]Kofman et al., 1998. Adv. Space Res., 21, 1589. [2]Ciarletti et al., 2015. A&A, 583, A40. [3]Seidensticker et al., 2007. Space Sci. Rev., 128, 301. [4]Lethuillier et al., 2016. A&A, 591, A32. [5]Spohn et al., 2015. Science, 349, aab0464. [6]Festou et al. (Eds.), Comets II. Univ. of Arizona Press. [7]Campbell and Ulrichs, 1969. J. Geophys. Res., 74, 5867. [8]Brouet et al., 2015. A&A, 583, A39. [9]Mattei et al., 2014. Icarus, 229, 428. [10]Brouet et al., 2016. J. Geophys. Res., under review. [11]Brouet et al., 2016. MNRAS, Rosetta special issue, submitted.

Topics
  • porous
  • impedance spectroscopy
  • surface
  • Energy-dispersive X-ray spectroscopy
  • porosity