Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sanctis, Maria Cristina De

  • Google
  • 1
  • 8
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2008Comet nuclei aggregation and thermal simulations to prepare the Rosetta missioncitations

Places of action

Chart of shared publication
Lasue, Jérémie
1 / 23 shared
Capria, M. T.
1 / 3 shared
Turrini, Diego
1 / 1 shared
Kofman, Wlodek W.
1 / 21 shared
Hadamcik, Edith
1 / 5 shared
Coradini, A.
1 / 3 shared
Levasseur-Regourd, Anny Chantal
1 / 30 shared
Botet, Robert
1 / 4 shared
Chart of publication period
2008

Co-Authors (by relevance)

  • Lasue, Jérémie
  • Capria, M. T.
  • Turrini, Diego
  • Kofman, Wlodek W.
  • Hadamcik, Edith
  • Coradini, A.
  • Levasseur-Regourd, Anny Chantal
  • Botet, Robert
OrganizationsLocationPeople

document

Comet nuclei aggregation and thermal simulations to prepare the Rosetta mission

  • Lasue, Jérémie
  • Capria, M. T.
  • Sanctis, Maria Cristina De
  • Turrini, Diego
  • Kofman, Wlodek W.
  • Hadamcik, Edith
  • Coradini, A.
  • Levasseur-Regourd, Anny Chantal
  • Botet, Robert
Abstract

The international Rosetta mission will study in depth 67P/Churyumov-Gerasimenko's nucleus global structure and the onset of its activity during the pre-perihelion phase. Numerical simulations towards realistic models of comet nuclei will facilitate the inversion procedures and the interpretation of the data obtained during the rendez-vous of the mission. New aspects of comet nuclei formation and evolution simulations have been developed by our teams to better describe the physical processes of the origins and evolution of these small bodies. Cometesimal aggregation simulations taking into account the evolution of the cohesive energy by sintering processes during accretion in the Kuiper belt can be used to interpret the layered structure and surface features observed for previous comets [1] and quantify the tensile strengths of these objects. Simulations have been done using up to 50000 cometesimals with sizes ranging from tens to hundreds of meters. A layering of the cohesive strength of the comet nuclei material naturally occurs leading to the presence of a high cohesive core surrounded by less cohesive outer layers. Thermal evolution models of comet nuclei have been rather successful in describing the more recent evolution of these objects. A new quasi-3D approach for non-spherically shaped comet nuclei has been developed for the case of 67P/Churyumov-Gerasimenko's nucleus to analyse the effect of irregular shapes (non-spherical, mountain-like and depression-like features) on its thermal evolution, on the local dust crust formation and the onset of its activity [2]. The results of such simulations are used to derive generic cometary nuclei models to be implemented in the analyses processes of the CONSERT experiment on-board Rosetta that will study the internal dielectric properties and heterogeneities of the nucleus. Support from CNES and Europlanet is acknowledged. [1] Belton et al., Icarus 187, 332 (2007) [2] Lasue et al., PSS, submitted.

Topics
  • impedance spectroscopy
  • surface
  • phase
  • experiment
  • simulation
  • laser emission spectroscopy
  • strength
  • layered
  • tensile strength
  • sintering