People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ciarletti, Valérie
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (34/34 displayed)
- 2025Characterizing heterogeneities in the subsurface with an ultra-wideband GPR: Application to WISDOM, the GPR of the Rosalind Franklin ExoMars mission
- 2024Characterizing heterogeneities in the subsurface with an ultra-wideband GPR: Application to WISDOM, the GPR of the Rosalind Franklin ExoMars mission
- 2022Retrieval of the ground dielectric permittivity by planetary GPR accommodated on a rover: Application to the estimation of the reflectors' depth by the WISDOM/ExoMars radarcitations
- 2021WISDOM Antenna Pattern in the presence of Rover and Soil
- 2020Validation of an automated detection and characterization of diffraction curves in the WISDOM/ExoMars radargrams with a Hough transform
- 2019The WISDOM radar on the ExoMars rover designed to provide 3D mapping of the shallow subsurface at Oxia Planum
- 2019Characterization and performances of the WISDOM ground penetrating radar for the ExoMars 2020 mission
- 2018CONSERT probing of 67P/C-G nucleus during the ROSETTA mission, operations and results
- 2017 Interior of 67P/C-G comet as seen by CONSERT bistatic radar on Rosetta
- 2017CONSERT constrains the internal structure of 67P at a few-metre size scalecitations
- 2016An interpretation of the CONSERT and SESAME-PP results based on new permittivity measurements of porous water ice and ice-basaltic/organic dust mixtures suggests an increase of porosity with depth in 67P
- 2016Looking at Comet 67P Sub-surface in the Vicinity of Abydos
- 2016Electrical properties of the first meters of 67P/Churyumov-Gerasimenko’s nucleus as constrained by PP-SESAME/Philae/Rosetta
- 2016The electrical properties of Titan’s surface at the Huygens landing site measured with the PWA-HASI Mutual Impedance Probe. New approach and new findingscitations
- 2016Electrical properties and porosity of the first meter of the nucleus of 67P/Churyumov-Gerasimenko. As constrained by the Permittivity Probe SESAME-PP/Philae/Rosettacitations
- 2016Electrical properties and porosity of the first meter of the nucleus of 67P/Churyumov-Gerasimenkocitations
- 2016Characterizing the interior of 67P in the vicinity of Abydos
- 2016Heterogeneities of 67P nucleus seen by CONSERT in the vicinity of Abydos
- 2016Effect of meter-scale heterogeneities inside 67P nucleus on CONSERT data
- 2015Insights gained from Data Measured by the CONSERT Instrument during Philae's Descent onto 67P/C-G's surface
- 2015CONSERT Radar Investigations of the Shallow Subsurface of Comet 67P, in the Vicinity of the Philae Lander
- 2015Properties of the 67P/Churyumov-Gerasimenko interior revealed by CONSERT radarcitations
- 2015Findings from the PP-SESAME experiment on board the Philae/ROSETTA lander on the surface of comet 67P
- 2015CONSERT suggests a change in local properties of 67P/Churyumov-Gerasimenko's nucleus at depthcitations
- 2015The CONSERT Instrument during Philae's Descent onto 67P/C-G’s surface: Insights on Philae’s Attitude and the Surface Permittivity Measurements at the Agilkia-Landing-Site
- 2015investigating with the CONSERT bistatic radar a potential permittivity gradient at the Philae Landing site on 67P/Churyumov-Gerasimenko
- 2015Revealing the Possible Existence of a Near-Surface Gradient in Local Properties of 67P/Churyumov-Gerasimenko Nucleus Through CONSERT Measurements
- 2015The interior of 67P/C-G nucleus revealed by CONSERT measurements and simulations
- 2015The interior of 67P/C-G nucleus revealed by CONSERT measurements and simulations
- 2014Titan Ground Complex Permittivity at the HUYGENS Landing Site; the PWA-HASI and Other Instruments Data Revisited
- 2014Measuring the permittivity of the surface of the Churyumov-Gerasimenko nucleus: the PP-SESAME experiment on board the Philae/ROSETTA lander
- 2014Revealing the properties of Chuyurmov-Gerasimenko's shallow sub-surface through CONSERT's measurements at grazing angles
- 2013Evaluation of the first simulation tool to quantitatively interpret the measurements of the ExoMars mission's Wisdom GPR
- 2012Simulation of in-flight calibrations and first cometary permittivity measurements by PP-SESAME on Philae
Places of action
Organizations | Location | People |
---|
document
Looking at Comet 67P Sub-surface in the Vicinity of Abydos
Abstract
While amazing surface features of comet 67P have been observed and revealed since the beginning of the Rosetta mission by a number of cameras onboard Rosetta’s main spacecraft (OSIRIS and NAVCAM) and Philae lander (CIVA and ROLIS), information below the surface has also been collected by the CONSERT (Comet Nucleus Sounding Experiment by Radiowave Transmission) experiment that can help constrain the nucleus formation and evolution. CONSERT is a bistatic radar with receivers and transmitters on-board both Rosetta’s main spacecraft and Philae lander. It has been successfully operating during the descent and First Science Sequence (FSS) right after Philae’s final landing at Abydos. The nucleus in the vicinity of Abydos has been actually sounded by CONSERT’s electromagnetic waves at 90 MHz with a spatial resolution around 10m (over lengths ranging from approximately 200 to 800 m and maximum depths of about one hundred of meters). The data collected provide information about the permittivity values inside the sounded volume and allows us to retrieve some constraints about the internal structures of the nucleus inside the sounded volume. In this paper, we specifically focus on local variations in the nucleus subsurface permittivity simulated over spatial scales ranging from tens to hundreds of meters. A number of propagation simulations corresponding to the CONSERT operations have been performed for a variety of subsurface permittivity models. The effect of local vertical and horizontal variations of the permittivity values around the landing site as well as comparison with CONSERT’s experimental data collected in the same configurations will be presented and discussed. Possible interpretations of the results will be presented as well as potential consequences for the nucleus structure in connection with observations instruments.