Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kofman, Wlodek W.

  • Google
  • 21
  • 48
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (21/21 displayed)

  • 2017 Interior of 67P/C-G comet as seen by CONSERT bistatic radar on Rosettacitations
  • 2016Cosmochemical implications of CONSERT permittivity characterization of 67P/CGcitations
  • 2016An interpretation of the CONSERT and SESAME-PP results based on new permittivity measurements of porous water ice and ice-basaltic/organic dust mixtures suggests an increase of porosity with depth in 67Pcitations
  • 2016Looking at Comet 67P Sub-surface in the Vicinity of Abydoscitations
  • 2016Characterizing the interior of 67P in the vicinity of Abydoscitations
  • 2016Cosmochemical implications of CONSERT permittivity characterization of 67P/C-Gcitations
  • 2016Heterogeneities of 67P nucleus seen by CONSERT in the vicinity of Abydoscitations
  • 2016Mineralogical Implications of CONSERT Permittivity Characterization of 67Pcitations
  • 2016Effect of meter-scale heterogeneities inside 67P nucleus on CONSERT datacitations
  • 2015Insights gained from Data Measured by the CONSERT Instrument during Philae's Descent onto 67P/C-G's surfacecitations
  • 2015Broadband permittivity measurements on porous planetary regoliths simulants, in relation with the Rosetta mission to 67P/C-Gcitations
  • 2015CONSERT Radar Investigations of the Shallow Subsurface of Comet 67P, in the Vicinity of the Philae Landercitations
  • 2015Broadband Permittivity Measurements on Porous Planetary Soil Simulants, in Relation with the Rosetta Missioncitations
  • 2015The CONSERT Instrument during Philae's Descent onto 67P/C-G’s surface: Insights on Philae’s Attitude and the Surface Permittivity Measurements at the Agilkia-Landing-Sitecitations
  • 2015Revealing the Possible Existence of a Near-Surface Gradient in Local Properties of 67P/Churyumov-Gerasimenko Nucleus Through CONSERT Measurementscitations
  • 2015The interior of 67P/C-G nucleus revealed by CONSERT measurements and simulationscitations
  • 2014Revealing the properties of Chuyurmov-Gerasimenko's shallow sub-surface through CONSERT's measurements at grazing anglescitations
  • 2009Comet nuclei primordial aggregation effects on their internal structurecitations
  • 2008Imaging of the Internal Structure of Comet 67P/Churyumov-Gerasimenko from Radiotomography CONSERT Data (Rosetta Mission) through spectral techniquescitations
  • 2008Comet nuclei aggregation and thermal simulations to prepare the Rosetta missioncitations
  • 2007Imaging of the Internal Structure of Comet 67P/Churyumov-Gerasimenko from Radiotomography CONSERT Data by Using Grid Computing Techniques (Rosetta Mission).citations

Places of action

Chart of shared publication
Hérique, Alain
6 / 11 shared
Lasue, Jérémie
13 / 23 shared
Ciarletti, Valérie
12 / 34 shared
Levasseur-Regourd, Anny Chantal
16 / 30 shared
Zine, Sonia
6 / 10 shared
Plettemeier, Dirk
8 / 20 shared
Buttarazzi, Ilaria
2 / 4 shared
Beck, Pierre
3 / 7 shared
Bonal, Lydie
3 / 7 shared
Heggy, Essam
6 / 7 shared
Quirico, Eric
3 / 12 shared
Sabouroux, Pierre
2 / 13 shared
Gall, Alice Le
1 / 3 shared
Lethuillier, Anthony
1 / 9 shared
Encrenaz, Pierre
3 / 8 shared
Thomas, Nicolas
1 / 6 shared
Poch, Olivier
1 / 5 shared
Neves, Luisa
1 / 2 shared
Brouet, Yann
3 / 9 shared
Herique, Alain
9 / 17 shared
Pommerol, Antoine
1 / 6 shared
Guiffaut, Christophe
4 / 5 shared
Lemonnier, Florentin
3 / 4 shared
Buttarazzi, E.
1 / 1 shared
Rogez, Yves
2 / 5 shared
Statz, Christoph
3 / 6 shared
Hahnel, Ronny
2 / 3 shared
Abraham, Jens
1 / 1 shared
Hegler, Sebastian
2 / 4 shared
Pasquero, Pierre
2 / 4 shared
Thomas, Nick
1 / 2 shared
Olagnier, Fleur
1 / 1 shared
Sabouroux, P.
1 / 6 shared
Brouet, Y.
1 / 5 shared
Thomas, N.
1 / 8 shared
Herique, A.
2 / 6 shared
Statz, C.
1 / 4 shared
Hegler, S.
1 / 2 shared
Plettemeier, D.
1 / 9 shared
Hadamcik, Edith
2 / 5 shared
Botet, R.
1 / 2 shared
Benna, M.
2 / 2 shared
Barriot, J.-P.
2 / 2 shared
Capria, M. T.
1 / 3 shared
Sanctis, Maria Cristina De
1 / 1 shared
Turrini, Diego
1 / 1 shared
Coradini, A.
1 / 3 shared
Botet, Robert
1 / 4 shared
Chart of publication period
2017
2016
2015
2014
2009
2008
2007

Co-Authors (by relevance)

  • Hérique, Alain
  • Lasue, Jérémie
  • Ciarletti, Valérie
  • Levasseur-Regourd, Anny Chantal
  • Zine, Sonia
  • Plettemeier, Dirk
  • Buttarazzi, Ilaria
  • Beck, Pierre
  • Bonal, Lydie
  • Heggy, Essam
  • Quirico, Eric
  • Sabouroux, Pierre
  • Gall, Alice Le
  • Lethuillier, Anthony
  • Encrenaz, Pierre
  • Thomas, Nicolas
  • Poch, Olivier
  • Neves, Luisa
  • Brouet, Yann
  • Herique, Alain
  • Pommerol, Antoine
  • Guiffaut, Christophe
  • Lemonnier, Florentin
  • Buttarazzi, E.
  • Rogez, Yves
  • Statz, Christoph
  • Hahnel, Ronny
  • Abraham, Jens
  • Hegler, Sebastian
  • Pasquero, Pierre
  • Thomas, Nick
  • Olagnier, Fleur
  • Sabouroux, P.
  • Brouet, Y.
  • Thomas, N.
  • Herique, A.
  • Statz, C.
  • Hegler, S.
  • Plettemeier, D.
  • Hadamcik, Edith
  • Botet, R.
  • Benna, M.
  • Barriot, J.-P.
  • Capria, M. T.
  • Sanctis, Maria Cristina De
  • Turrini, Diego
  • Coradini, A.
  • Botet, Robert
OrganizationsLocationPeople

document

Broadband permittivity measurements on porous planetary regoliths simulants, in relation with the Rosetta mission to 67P/C-G

  • Sabouroux, Pierre
  • Encrenaz, Pierre
  • Kofman, Wlodek W.
  • Heggy, Essam
  • Levasseur-Regourd, Anny Chantal
  • Thomas, Nick
  • Brouet, Yann
Abstract

The Rosetta mission has successfully rendezvous comet 67P/Churyumov-Gerasimenko (hereafter 67P) last year and landed Philae module on its nucleus on 12 November it 2014. Among instruments onboard Rosetta, MIRO [1], composed of two radiometers, with receivers at 190 GHz and 563 GHz (center-band), is dedicated to the measurements of the subsurface and surface brightness temperatures. These values depend on the complex relative permittivity (hereafter permittivity) with ε' and ε " the real and imaginary parts. The permittivity of the material depends on frequency, bulk density/porosity, composition and temperature [2]. Considering the very low bulk density of 67P nucleus (about 450 kg.m-3 [3]) and the suspected presence of a dust mantle in many areas of the nucleus [4], investigations on the permittivity of porous granular samples are needed to support the interpretation of MIRO data, as well as of other microwave experiments onboard Rosetta, e.g. CONSERT [5], a bistatic penetrating radar working at 90 MHz. We have developed a programme of permittivity measurements on porous granular samples over a frequency range from 50 MHz to 190 GHz under laboratory conditions (e.g. [6] and [7]). We present new results obtained on JSC-1A lunar soil simulant and ashes from Etna. The samples were split into several sub-samples with different size ranges covering a few to 500 µm. Bulk densities of the sub-samples were carefully measured and found to be in the 800-1400 kg.m-3 range. Sub-samples were also dried and volumetric moisture content was found to be below 0.6%. From 50 MHz to 6 GHz and at 190 GHz, the permittivity has been determined, respectively with a coaxial cell and with a quasi-optical bench mounted in transmission, both connected to a vector network analyzer. The results demonstrate the dispersive behaviours of ε' between 50 MHz and 190 GHz. Values of ε' remain within the 3.9-2.6 range for all sub-samples. At CONSERT frequency, ε " is within the 0.01-0.09 range for all sub-samples. The single-relaxation Debye model fits relatively well the global behaviour of ε' over the frequency range, thus validating the experimental setups and measurements obtained. Furthermore, results confirm that ε' decreases quasi-linearly with the decreasing bulk density at any frequency, as expected by the mixing formulae. Taking into account possible temperature variations within 67P nucleus [8] and the linear decrease of the permittivity with the temperature, as measured by [9] on JSC-1A sample, these results indicate that, on the near-surface of 67P covered by a free-ice dust mantle at the frequencies of MIRO and CONSERT

Topics
  • porous
  • density
  • impedance spectroscopy
  • surface
  • experiment
  • dielectric constant
  • porosity