People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lier, Gregory Van
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2017A Computational Study on the role of Noncovalent Interactions in the stability of Polymer/Graphene Nanocompositescitations
- 2013Inducing aromaticity patterns and tuning the electronic transport of zigzag graphene nanoribbons via edge designcitations
- 2012Analysing organic solar cell blends at thousands of degrees per second
- 2011Improving The Dispersion Of Carbon Nanotubes In Polystyrene By Blending With Siloxane
- 2011Partially miscible polystyrene/ polymethylphenylsiloxane blends for nanocomposites
Places of action
Organizations | Location | People |
---|
document
Analysing organic solar cell blends at thousands of degrees per second
Abstract
Organic photovoltaics (OPVs) can still only achieve efficiencies below those of conventional silicon photovoltaics. To date the highest OPV efficiencies have been found for so-called bulk-heterojunction (BHJ) solar cells, where the active layer is a bi-continuous composite of donor (a conjugated polymer) and acceptor (a small molecule) phases. As in conventional polymer blend systems, the morphology formed will strongly influence the material characteristics, and post-production annealing has been shown to increase device efficiencies. <br/>In this study, the active layer of BHJ devices is analysed using fast-scanning calorimetry techniques in order to investigate the transitions that play a role in stability and morphology development. In particular, Rapid Heat-Cool Calorimetry (RHC) [1], and fast scanning differential chip calorimetry (FSDCC) were used. FSDCC especially shows great potential for these systems due to the very high scanning rates and the ability to study thin layer samples, like in actual BHJ devices.