People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Van Den Brande, Niko
Vrije Universiteit Brussel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (43/43 displayed)
- 2024Construction of furan-maleimide Diels-Alder reversible network cure diagrams: modelling and experimental validation
- 2024Effects of Cure on the Ionic Conductivity and Relaxation Strength of a Reversible Polymer Network Studied by Dielectric Spectroscopy.citations
- 2024Diels-Alder Network Blends as Self-Healing Encapsulants for Liquid Metal-Based Stretchable Electronicscitations
- 2024Modelling of diffusion-controlled Diels-Alder reversible network formation and its application to cure diagrams
- 2023Separating Kinetics from Relaxation Dynamics in Reactive Soft Matter by Dielectric Spectroscopycitations
- 2023Real-Time Determination of the Glass Transition Temperature during Reversible Network Formation Based on Furan–Maleimide Diels–Alder Cycloadditions Using Dielectric Spectroscopycitations
- 2022A PDTPQx:PC61BM blend with pronounced charge-transfer absorption for organic resonant cavity photodetectors – direct arylation polymerization vs. Stille polycondensationcitations
- 2022A PDTPQx:PC61BM blend with pronounced charge-transfer absorption for organic resonant cavity photodetectors – direct arylation polymerization vs. Stille polycondensationcitations
- 2022UV Stability of Self-Healing Poly(methacrylate) Network Layerscitations
- 2021Phosphonium-based polythiophene conjugated polyelectrolytes with different surfactant counterions: thermal properties, self-assembly and photovoltaic performancescitations
- 2020UV-curable self-healing polymer layers for application in photovoltaics
- 2020Phosphonium‐based polythiophene conjugated polyelectrolytes with different surfactant counterions: thermal properties, self‐assembly and photovoltaic performancescitations
- 2020Self-Healing in Mobility-Restricted Conditions Maintaining Mechanical Robustness: Furan–Maleimide Diels–Alder Cycloadditions in Polymer Networks for Ambient Applicationscitations
- 2020Phosphonium-based polythiopheneconjugated polyelectrolytes with differentsurfactant counterions: thermal properties,self-assembly and photovoltaic performancescitations
- 2020Phosphonium-based polythiophene conjugated polyelectrolytes with different surfactant counterions: thermal properties, self-assembly and photovoltaic performances
- 2020Comparative study on the effects of alkylsilyl and alkylthio side chains on the performance of fullerene and non-fullerene polymer solar cellscitations
- 2020Comparative study on the effects of alkylsilyl and alkylthio side chains on the performance of fullerene and non-fullerene polymer solar cellscitations
- 2020Self-healing UV-curable polymer network with reversible Diels-Alder bonds for applications in ambient conditionscitations
- 2019Diffusion- and Mobility-Controlled Self-Healing Polymer Networks with Dynamic Covalent Bondingcitations
- 2019Increasing photovoltaic module sustainability through UV-curable self-healing polymer layers
- 2019UV-curable self-healing polymer layers for increased sustainability of photovoltaics
- 2019Ladder-type high gap conjugated polymers based on indacenodithieno[3,2-b]thiophene and bithiazole for organic photovoltaicscitations
- 2018The Effect of Vitrification on the Diels-Alder Reaction Kinetics
- 2018Glass Structure Controls Crystal Polymorph Selection in Vapor-Deposited Films of 4,4 '-Bis(N-carbazolyI)-1,1 '-biphenylcitations
- 2017Probing the bulk heterojunction morphology in thermally annealed active layers for polymer solar cellscitations
- 2016High-Permittivity Conjugated Polyelectrolyte Interlayers for High-Performance Bulk Heterojunction Organic Solar Cellscitations
- 2016Elucidating Batch-to-Batch Variation Caused by Homocoupled Side Products in Solution-Processable Organic Solar Cellscitations
- 2016Thermal behaviour below and inside the glass transition region of a submicron P3HT layer studied by fast scanning chip calorimetrycitations
- 2015Isothermal Crystallization of PC61BM in Thin Layers Far below the Glass Transition Temperaturecitations
- 2015Effect of molecular weight on morphology and photovoltaic properties in P3HT:PCBM solar cellscitations
- 2015Effect of molecular weight on morphology and photovoltaic properties in P3HT:PCBM solar cells
- 2013Imidazolium-substituted ionic (co)polythiophenes: Compositional influence on solution behavior and thermal propertiescitations
- 2013Imidazolium-substituted ionic (co)polythiophenes: Compositional influence on solution behavior and thermal properties
- 2012Analysing organic solar cell blends at thousands of degrees per second
- 2012Improved Photovoltaic Performance of a Semicrystalline Narrow Bandgap Copolymer Based on 4H-Cyclopenta[2,1-b:3,4-b ']dithiophene Donor and Thiazolo[5,4-d]thiazole Acceptor Unitscitations
- 2012Improved Photovoltaic Performance of a Semicrystalline Narrow Bandgap Copolymer Based on 4H-Cyclopenta[2,1-b:3,4-b ']dithiophene Donor and Thiazolo[5,4-d]thiazole Acceptor Units
- 2012Crystallization Kinetics and Morphology Relations on Thermally Annealed Bulk Heterojunction Solar Cell Blends Studied by Rapid Heat Cool Calorimetry (RHC)
- 2011Improving The Dispersion Of Carbon Nanotubes In Polystyrene By Blending With Siloxane
- 2011Thermal annealing of P3HT: PCBM blends for photovoltaic studies
- 2011Partially miscible polystyrene/ polymethylphenylsiloxane blends for nanocomposites
- 2011Thermal Annealing of P3HT: PCBM Organic Photovoltaic Blends
- 2011Isothermal crystallisation study of P3HT:PCBM blends as used in bulk heterojunction solar cells based on fast scanning calorimetry techniques
- 2010Isothermal crystallization kinetics of P3HT:PCBM blends by means of RHC
Places of action
Organizations | Location | People |
---|
document
Thermal Annealing of P3HT: PCBM Organic Photovoltaic Blends
Abstract
Post production annealing is an essential step for raising power conversion efficiency of bulk heterojunction solar cells [1]. Since defining appropriate annealing temperatures and times is vitally important, the isothermal crystallization of poly(3-hexyl thiophene) (P3HT) and [6,6]-phenyl C61 - butyric acid methyl ester (PCBM) blend is investigated by Rapid Heat-Cool Calorimetry (RHC), Fast Scanning Differential Chip Calorimetry (FSDCC), and AC Differential Chip Calorimetry (ACDCC).<br/> <br/>RHC is a fast-scanning DSC technique developed by TA Instruments [2], having a 10 times smaller furnace heated by Infrared light and a sample size of about 50 to 500 µg. The RHC permits to heat at rates of up to 2000 K/min and cool at 750 K/min and 500 K/min down to 60 °C and 0 °C.<br/> <br/>FSDCC allows temperature control of the sample and determination of its heat capacity by employing cooling and heating rates from 50 to 1 MK/s[3].Since it is also possible to control the cooling rate, studying the kinetics of extremely fast crystallization and reorganization processes in thin films of semi-crystalline polymers on heating becomes possible.<br/> <br/>ACDCC is used to study the step in heat capacity at the glass transition in nanometer size thin films with samples masses below 1 ng in a broad temperature range [4]. The AC-chip calorimeter allows for the frequency dependent measurement of complex heat capacity in the frequency range of 1 Hz to 1 kHz with a scan rate from 1 K/min to 5 K/min. This method is very suitable for the solar cell blends since the film thickness can be determined and applied as it is in the production line of photovoltaic devices. <br/> <br/>The rate of crystallization during thermal annealing can be linked to the long-term stability of the blend morphology.