People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Masschaele, Bert
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2009Porosity and microstructure characterization of building stones and concretes
- 2009Development of injection moulded matrix tablets based on mixtures of ethylcellulose and low-substituted hydroxypropylcellulose
- 2009Multi-resolution X-ray CT research applied on geomaterials
- 2008X-ray computed microtomography on cementitious materials
- 2008Comparison of different nano- and micro-focus X-ray computed tomography set-ups for the visualization of the soil microstructure and soil organic matter
- 2007Strain monitoring in thermoplastic composites with optical fiber sensors: embedding process, visualization with micro-tomography, and fatigue results
Places of action
Organizations | Location | People |
---|
article
Porosity and microstructure characterization of building stones and concretes
Abstract
The microstructure of building materials greatly influences engineering properties like permeability, strength and durability. To determine this microstructure, different techniques were developed, each with its own limitations. The purpose of this study on concrete and natural building stones was to compare and to combine data obtained by X-ray computed micro-tomography (micro-CT), water absorption under vacuum and mercury intrusion porosimetry (MIP). Pore-size distribution curves ranging from 10 nm to 1 mm and total porosity results were obtained. Furthermore, micro-CT revealed the presence of an interfacial transition zone (ITZ) and of micro-cracks inside the aggregates of the concrete samples after mercury intrusion. Micro-CT visualized mercury inside large air bubbles within the concrete samples. Both micro-CT and MIP were compared and their respective advantages and disadvantages discussed.