Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Graef, B. De

  • Google
  • 2
  • 8
  • 47

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2010X-ray tomography to visualise concrete degradation and (self)-healingcitations
  • 2005A sensitivity study for the visualisation of bacterial weathering of concrete and stone with computerised X-ray microtomography47citations

Places of action

Chart of shared publication
Cnudde, Veerle
2 / 39 shared
Loo, Denis Van
1 / 2 shared
Belie, Nele De
1 / 54 shared
Tittelboom, Kim Van
1 / 14 shared
Jacobs, P.
1 / 4 shared
Verstraete, W.
1 / 5 shared
Belie, N. De
1 / 8 shared
Dick, J.
1 / 1 shared
Chart of publication period
2010
2005

Co-Authors (by relevance)

  • Cnudde, Veerle
  • Loo, Denis Van
  • Belie, Nele De
  • Tittelboom, Kim Van
  • Jacobs, P.
  • Verstraete, W.
  • Belie, N. De
  • Dick, J.
OrganizationsLocationPeople

document

X-ray tomography to visualise concrete degradation and (self)-healing

  • Cnudde, Veerle
  • Loo, Denis Van
  • Belie, Nele De
  • Graef, B. De
  • Tittelboom, Kim Van
Abstract

Concrete and stone structures suffer from two major damage problems: surface degradation due to physical, chemical or microbial weathering, and crack formation. It has been estimated that in Europe, 50% of the annual construction budget is spent on rehabilitation and repair of the existing structures. Computed X-ray tomography (CT), a radiological imaging technique, can be applied to study the effect of weathering on the microstructure of the building material. This technique will show loss of material situated at the exposed surface, formation of dense layers with reaction products and changes in internal pore structure. It can also be used to visualise cracks and investigate the efficiency of crack healing applications. A relatively new research domain aims at the development of smart, self-healing materials. Autonomous self-healing implies that the material is engineered in such a way that, upon cracking, the material will sense the damage and heal the crack. In this way the original material properties, such as strength, stiffness, and impermeability, will be largely restored. High resolution CT allows to examine the distribution of capsules with healing agents in the matrix, to visualise rupture of capsules upon crack formation, and to provide 3D images of the healing material that is released into the crack which will allow to judge the crack filling efficiency.

Topics
  • impedance spectroscopy
  • microstructure
  • pore
  • surface
  • tomography
  • crack
  • strength