People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nejati, Siamak
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
Places of action
Organizations | Location | People |
---|
document
Polymer electronic materials for sustainable energies
Abstract
<p>As electronic devices reduce in size, scale and weight, polymers are becoming more attractive as electronic materials that are lighter weight, easier and lower cost to synthesize, and place less demand on purity. However, device performance is significantly influenced by the ability to properly synthesize polymers and integrate them effectively into devices. Particularly with nanostructured device architectures, conventional liquid phase synthesis and processing face significant limitations due to the presence of the liquid medium. Here, initiated chemical vapor deposition (iCVD) is demonstrated as a viable means for overcoming these barriers, providing a liquid-free approach for the direct synthesis and growth of electronic polymers that yield significantly enhanced performance in energy harvesting and storage devices.</p>