People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Koster, Lja
University of Groningen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (32/32 displayed)
- 2023The Role of Thermalization in the Cooling Dynamics of Hot Carrier Solar Cellscitations
- 2022A method for identifying the cause of inefficient salt-doping in organic semiconductorscitations
- 2022Vacuum-Deposited Cesium Tin Iodide Thin Films with Tunable Thermoelectric Propertiescitations
- 2022Backbone-driven host-dopant miscibility modulates molecular doping in NDI conjugated polymerscitations
- 2021Amphipathic Side Chain of a Conjugated Polymer Optimizes Dopant Location toward Efficient N-Type Organic Thermoelectricscitations
- 2021Revealing Charge Carrier Mobility and Defect Densities in Metal Halide Perovskites via Space-Charge-Limited Current Measurementscitations
- 2021Understanding Dark Current-Voltage Characteristics in Metal-Halide Perovskite Single Crystalscitations
- 2021Carrier-carrier Coulomb interactions reduce power factor in organic thermoelectricscitations
- 2021Molecular Doping Directed by a Neutral Radicalcitations
- 2020Reaching a Double-Digit Dielectric Constant with Fullerene Derivativescitations
- 2020Electrical Conductivity of Doped Organic Semiconductors Limited by Carrier-Carrier Interactionscitations
- 2020N-type organic thermoelectricscitations
- 2020Toward Understanding Space-Charge Limited Current Measurements on Metal Halide Perovskitescitations
- 20191,8-diiodooctane acts as a photo-acid in organic solar cellscitations
- 2018Enhanced n-Doping Efficiency of a Naphthalenediimide-Based Copolymer through Polar Side Chains for Organic Thermoelectricscitations
- 2017N-Type Organic Thermoelectricscitations
- 2017Relating polymer chemical structure to the stability of polymer:citations
- 2016Deposition of LiF onto Films of Fullerene Derivatives Leads to Bulk Dopingcitations
- 2016N-type polymers as electron extraction layers in hybrid perovskite solar cells with improved ambient stabilitycitations
- 2016A New Figure of Merit for Organic Solar Cells with Transport-limited Photocurrentscitations
- 2016Compatibility of PTB7 and [70]PCBM as a Key Factor for the Stability of PTB7citations
- 2015The Effect of Large Compositional Inhomogeneities on the Performance of Organic Solar Cellscitations
- 2015Strategy for Enhancing the Dielectric Constant of Organic Semiconductors Without Sacrificing Charge Carrier Mobility and Solubilitycitations
- 2014Strategy for Enhancing the Electric Permittivity of Organic Semiconductors
- 2014Charge transport and recombination in PDPP5Tcitations
- 2011Validity of the Einstein Relation in Disordered Organic Semiconductorscitations
- 2007Device physics of polymercitations
- 2007Device physics of donor/acceptor-blend solar cells
- 2007Hybrid polymer solar cells from highly reactive diethylzinccitations
- 2006Light intensity dependence of open-circuit voltage and short-circuit current of polymer/fullerene solar cellscitations
- 2005Origin of the light intensity dependence of the short-circuit current of polymer/fullerene solar cellscitations
- 2004Effect of metal electrodes on the performance of polymercitations
Places of action
Organizations | Location | People |
---|
thesis
Device physics of donor/acceptor-blend solar cells
Abstract
Harvesting energy directly from the Sun is a very attractive, but not an easy way of providing mankind with energy. Efficient, cheap, lightweight, flexible, and environmentally friendly solar panels are very desirable. Conjugated polymers bear the potential of fulfilling these requisites. Due to their unique chemical makeup, these polymers can be used as optoelectronically active materials, e.g., they can be optically excited and can transport charge carriers. As compared to inorganic materials, polymers have (at least) one serious drawback: upon light absorption excitons are formed, rather than free charge carriers. A second material is needed to break up these excitons. A much used way of achieving this is to mix the polymer with a material that readily accepts the electrons, leaving the holes in the polymer phase. As excitons in the polymer phase only move around for a couple of nanometers before they decay to the ground state, it is vital to induce a morphology that is characterized by intimate mixing of both materials (a so-called bulk heterojunction or BHJ). A typical BHJ solar cell consists of a glass substrate coated with a transparent electrode, the active layer, and a metallic top electrode. The active layer is formed by spin casting a co-solution of the polymer and the electron accepting material. The voltage for which the current in the external circuit is zero is called the open-circuit voltage Voc. The current density that flows out of the solar cell at zero bias is named the short-circuit current density Jsc. These two important quantities are described in the following. Although significant progress has been made, the efficiency of current BHJ solar cells still does not warrant commercialization. Targeted improvement is hindered by limited understanding of the factors that determine the performance. The main theme of this thesis is to introduce a simple model for the electrical characteristics of BHJ solar cells relating their performance to basic physics and material properties such as charge carrier mobilities. The metal-insulator-metal (MIM) model, as introduced in this work, describes the generation and transport processes in the BHJ as if occurring in one virtual semiconductor. Drift and diffusion of charge carriers, the effect of charge density on the electric field, bimolecular recombination, and a temperature- and field-dependent generation mechanism of free charges are incorporated. By using (values close to) measured charge carrier mobilities, the experimental current-voltage characteristics are regained by the MIM model, showing the soundness of this approach. Although bimolecular recombination in organic semiconductors can be adequately described by Langevin’s equation, meaning that the recombination strength depends on the sum of the charge carrier mobilities, BHJs behave differently. As is known from direct measurements, the bimolecular recombination strength in BHJs is significantly smaller than predicted by the Langevin equation. From the modeling of current-voltage characteristics, it is found that the bimolecular recombination strength is indeed significantly reduced, and is governed by the mobility of the slowest charge carrier and not by the sum of the mobilities. The MIM model sheds new light on two key parameters of BHJ solar cells: the open-circuit voltage and the short-circuit current. By studying the dependence of Voc on incident light intensity, it is established that BHJs behave differently than inorganic p-n junctions. Within the framework of the MIM model, an alternative explanation for the open-circuit voltage is presented. Based on the notion that the quasi-Fermi potentials are constant throughout the device, a formula for Voc is derived that consistently describes the open-circuit voltage. In short, if suitable electrodes are applied to the active layer, Voc is determined by the energy levels of both materials. The energy needed to dissociate excitons represents an important loss in Voc. Simple analytical expressions for the current that can be drawn from a photoconductor indicate that the short-circuit current density should be equal to qGL, where q is the elementary charge, G the generation rate of free electrons and holes, and L is the thickness of the active layer. In this case, Jsc is proportional (through G) to the intensity I of light incident on the device. This linear dependence has been observed in many systems. A small deviation from linearity, in which case Jsc µ Iα with 0.85 ≤ α ≤ 1, was also reported for various systems. This sublinear behavior was ascribed to bimolecular recombination. In the 1970’s Goodman and Rose pointed out that the photocurrent can become limited by space charge, provided that the active layer be thick enough and there exists a difference between electron and hole mobilities. Under these premises, the photocurrent is expected to be proportional to I0.75. This suggests that the exponent α is a function of the charge carri...