People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Adam, Clayton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2020The effect of vertebral body stapling on spine biomechanics and structure using a bovine modelcitations
- 2014Gravity-induced coronal plane joint moments in the adolescent scoliotic spine
- 2014Segmental torso masses in adolescent idiopathic scoliosiscitations
- 2014The effect of repeated loading and freeze - thaw cycling on immature bovine thoracic motion segment stiffnesscitations
- 2014The effect of intervertebral staple insertion on bovine spine segment stiffness
- 2014Intervertebral staple grading system with micro-CT
- 2013Segmental torso masses and gravity-induced coronal plane joint moments in adolescent idiopathic scoliosis
- 2013The effect of testing protocol on immature bovine thoracic spine segment stiffness
- 2013Segmental torso masses and coronal plane joint torques in the adolescent scoliotic spine
- 2010Fusionless scoliosis correction using shape memory alloy staples
- 2009Development of a biaxial compression device for biological samples: preliminary experimental results for a closed cell foamcitations
- 2006Development of a method to validate computer models of the spine for scoliosis correction surgery simulation
- 2002Finite element analysis of high strain rate superplastic forming (SPF) of Al–Ti alloyscitations
Places of action
Organizations | Location | People |
---|
document
Segmental torso masses and gravity-induced coronal plane joint moments in adolescent idiopathic scoliosis
Abstract
Introduction: Calculating segmental (vertebral level-by-level) torso masses in Adolescent Idiopathic Scoliosis (AIS) patients allows the gravitational loading on the scoliotic spine during relaxed standing to be estimated. This study used supine CT scans of AIS patients to measure segmental torso masses and explored the joint moments in the coronal plane, particularly at the apex of a scoliotic major curve.Methods: Existing low dose CT data from the Paediatric Spine Research Group was used to calculate vertebral level-by-level torso masses and joint moments occurring in the spine for a group of 20 female AIS patients with right sided thoracic curves.The mean age was 15.0 ± 2.7 years and all curves were classified Lenke Type 1 with a mean Cobb angle 52 ± 5.9°. Image processing software, ImageJ (v1.45 NIH USA) was used to create reformatted coronal plane images, reconstruct vertebral level-by-level torso segments and subsequently measure the torso volume corresponding to each vertebral level. Segment mass was then determined by assuming a tissue density of 1.04x103 kg/m3.Body segment masses for the head, neck and arms were taken from published anthropometric data (Winter 2009). Intervertebral joint moments in the coronal plane at each vertebral level were found from the position of the centroid of the segment masses relative to the joint centres with the segmental body mass data.Results and Discussion: The magnitude of the torso masses from T1-L5 increased inferiorly, with a 150% increase in mean segmental torso mass from 0.6kg at T1 to 1.5kg at L5. The magnitudes of the calculated coronal plane joint moments during relaxed standing were typically 5-7 Nm at the apex of the curve, with the highest apex joint torque of 7Nm. The CT scans were performed in the supine position and curve magnitudes are known to be 7-10° smaller than those measured in standing, due to the absence of gravity acting on the spine. Hence, it can be expected that the moments produced by gravity in the standing individual will be greater than those calculated here.