People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hidayat, Taufiq
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2023Development of experimental techniques for the phase equilibrium study in the Pb-Fe-O-S-Si system involving gas, slag, matte, lead metal and tridymite phasescitations
- 2022Experimental study, thermodynamic calculations and industrial implications of slag/matte/metal equilibria in the Cu–Pb–Fe–O–S–Si systemcitations
- 2020Experimental measurement and thermodynamic model predictions of the distributions of Cu, As, Sb and Sn between liquid lead and PbO–FeO–Fe2O3–SiO2 slagcitations
- 2020Thermodynamic assessment of the CaO–Cu2O–FeO–Fe2O3 systemcitations
- 2020The influence of temperature and matte grade on gas-slag-matte-tridymite equilibria in the Cu-Fe-O-S-Si system at p (SO2) = 0.25 atmcitations
- 2019Experimental investigation and thermodynamic modeling of the distributions of Ag and Au between slag, matte, and metal in the Cu–Fe–O–S–Si systemcitations
- 2019Distributions of Ag, Bi, and Sb as minor elements between iron-silicate slag and copper in equilibrium with tridymite in the Cu-Fe-O-Si system at T = 1250 °C and 1300 °C (1523 K and 1573 K)citations
- 2019Combined experimental and thermodynamic modelling investigation of the distribution of antimony and tin between phases in the Cu-Fe-O-S-Si systemcitations
- 2019Characterisation of the Effect of Al2O3 on the Liquidus Temperatures of Copper Cleaning Furnace Slags Using Experimental and Modelling Approachcitations
- 2019Experimental Study and Thermodynamic Calculations of the Distribution of Ag, Au, Bi, and Zn Between Pb Metal and Pb–Fe–O–Si slagcitations
- 2019Integrated experimental study and thermodynamic modelling of the distribution of arsenic between phases in the Cu-Fe-O-S-Si systemcitations
- 2019Integrated experimental and thermodynamic modelling research for primary and recycling pyrometallurgy
- 2019Experimental and thermodynamic modelling study of the effects of Al2O3, CaO AND MgO impurities on gas/slag/matte/spinel equilibria in the “Cu2O”-“FeO”-SiO2-S-Al2O3-CaO-MgO system
- 2018Microanalysis and experimental techniques for the determination of multicomponent phase equilibria for non-ferrous smelting and recycling systemscitations
- 2017Experimental investigation of gas/slag/matte/tridymite equilibria in the Cu-Fe-O-S-Si System in controlled gas atmospheres: Experimental results at 1473 K (1200 A degrees C) and P(SO2)=0.25 atmcitations
- 2017High-temperature experimental and thermodynamic modelling research on the pyrometallurgical processing of coppercitations
- 2017The integration of plant sample analysis, laboratory studies, and thermodynamic modeling to predict slag-matte equilibria in nickel sulfide convertingcitations
- 2017Experimental and modelling research in support of energy savings and improved productivity in non-ferrous metal production and recycling
- 2017Experimental investigation of gas/slag/matte/tridymite equilibria in the Cu-Fe-O-S-Si system in controlled atmospheres: Development of techniquecitations
- 2016Determination of thermodynamic properties of Ca4Fe9O17 by solid state EMF methodcitations
- 2015Recent advances in research for non-ferrous smelting and recycling
- 2013Critical assessment and thermodynamic modeling of the Cu-Fe-O systemcitations
- 2012Experimental study of ferrous calcium silicate slags: Phase equilibria at P(O(2)) between 10(-5) atm and 10(-7) atmcitations
- 2012Phase equilibria studies of Cu-O-Si systems in equilibrium with air and metallic copper and Cu-Me-O-Si systems (Me = Ca, Mg, Al, and Fe) in equilibrium with metallic coppercitations
Places of action
Organizations | Location | People |
---|
document
Recent advances in research for non-ferrous smelting and recycling
Abstract
As metal smelting and recycling pyrometallurgical systems become increasingly more complex the need for advanced experimental and thermodynamic modelling techniques that accurately describe the chemistries of these systems are becoming more widely appreciated. These techniques can be used to predict the optimum process conditions in terms of, for example, charge composition, temperature and oxygen partial pressure, and the partitioning of elements between phases and different process streams. To provide fundamental information on these multi-component, multi-phase equilibria it has been necessary to develop new research methodologies and techniques. An approach that has proven to be particularly successful and useful for non-ferrous systems has been the integrated research program undertaken at PYROSEARCH. The experimental studies involve high temperature equilibration in controlled gas atmospheres, rapid quenching and direct measurement of compositions of equilibrium phases with electron probe X-ray microanalysis (EPMA). The thermodynamic modelling, undertaken using the computer package FactSage with the quasi-chemical model for the liquid slag phase, is closely integrated with the parallel experimental research. Experiments are planned to provide specific data for thermodynamic model development as well as for pseudo-ternary liquidus diagrams, which can be used directly by process operators. Thermodynamic assessments are used to identify priorities for experiments. Experimental and modelling studies are combined into an integrated research program contributing to, and enhancing outcomes of, each other and of the overall program. Importantly, these novel approaches have enabled measurements to be made in systems that could not previously be characterised, for example, due to uncontrollable reactions with container materials or changes in bulk composition due to vapour phase reactions. It is now possible to obtain fundamental phase equilibria data on liquidus, solid and liquid solutions in not only low order systems but also for the more complex multi-component multi-phase systems encountered in industrial practice. The new data and models can now be applied to provide a clearer understanding of process chemistry and how this knowledge can be used to assist in improvements of the processes. The approach is illustrated in the paper with several examples of applications to non-ferrous pyrometallurgical systems, including copper, lead and tin.