People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kariem, Hawraa
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2015Micro-poro-elasticity of baghdadite-based bone tissue engineering scaffolds: A unifying approach based on ultrasonics, nanoindentation, and homogenization theorycitations
- 2015Micro-poro-elasticity of baghdadite-based bone tissue engineering scaffolds:A unifying approach based on ultrasonics, nanoindentation, and homogenization theory
- 2014Micro-elasticity of porous ceramic baghdadite
Places of action
Organizations | Location | People |
---|
document
Micro-elasticity of porous ceramic baghdadite
Abstract
Bone tissue engineering aims at repairing damaged bone and restoring its functions with the help of biocompatible materials cultivated with cells and corresponding growth factors [1]. Besides being osteoconductive and osteoinductive, the bone substitute or scaffold should exhibit sufficient porosity for good vascular and tissue ingrowth, while not overly compromising the overall mechanical properties of the implant, i.e. its stiffness and strength. The design process of such scaffolds requires a multitude of in vitro and in vivo experiments and has proven to be a challenging task, thus giving rise to the wish for rational, computer-aided design of biomaterials, regarding not only biological and cell transport aspects, but also mechanics. <br/><br/>Highly porous baghdadite (Ca3ZrSi2O9) scaffolds have shown promising biological responses when used for the repair of critical size defects in rabbit radial bones [2]. However, the mechanical properties of these scaffolds require further investigation. Therefore, by using structure-property relations derived from ultrasound and nanoindentation experiments, and on the basis of theoretical and applied micromechanics, the current research aims at applying the state-of-the-art methods in computational biomechanics and biomaterials to this new material to investigate its elastic properties.