Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Abreu, Joao Luiz De

  • Google
  • 1
  • 6
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Comparative analysis of elastomeric die materials for semidirect composite restorationscitations

Places of action

Chart of shared publication
Hirata, Ronaldo
1 / 1 shared
Mijares, Dindo
1 / 3 shared
Witek, Lukasz
1 / 42 shared
Katz, Steven
1 / 1 shared
Sbardelotto, Cristian
1 / 2 shared
Coelho, Paulo G.
1 / 36 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Hirata, Ronaldo
  • Mijares, Dindo
  • Witek, Lukasz
  • Katz, Steven
  • Sbardelotto, Cristian
  • Coelho, Paulo G.
OrganizationsLocationPeople

article

Comparative analysis of elastomeric die materials for semidirect composite restorations

  • Hirata, Ronaldo
  • Mijares, Dindo
  • Abreu, Joao Luiz De
  • Witek, Lukasz
  • Katz, Steven
  • Sbardelotto, Cristian
  • Coelho, Paulo G.
Abstract

<p>AIM: Die silicone materials are used to build chairside composite restorations. The purpose of this study was to compare the flowability, dimension accuracy, and tear strength of four elastomeric die materials. MATERIAL AND METHODS: Materials were divided into four groups: Mach-2 (M2), Scan Die (SD), GrandioSO Inlay System (GIS), and Impregum-F (IM). Flowability analysis was carried out using the shark fin test (SFT). For dimension accuracy, impressions were taken from a premolar Class I preparation and an elastomeric model was cast. Composite resin restorations were built and positioned into the premolar for gap measurement. The mean gap length was divided into three levels: acceptable (A), not acceptable (NA), and misfit (M). For tear strength, strip specimens were made with a V-shaped notch (n = 6). The specimens were tested in a universal machine until tear. All data were analyzed statistically with a confidence interval of 95%. RESULTS: GIS showed the lowest flowability values, with no differences between IM, M2, and SD. For dimension accuracy, IM showed 100% 'A' gap values, followed by M2 (80%), SD (60%), and GIS (60%). For tear strength, IM showed the highest values, followed by M2, GIS, and SD. CONCLUSIONS: M2, SD, and IM had similar flowability, while GIS had the lowest. IM presented higher tear strength than M2, followed by GIS and SD. IM showed the highest degrees of acceptable gap filling, followed by M2.</p>

Topics
  • strength
  • composite
  • resin