People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mäkelä, Tapio
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2022Giant magnetoresistance response in Sr 2 FeMoO 6 based organic spin valvescitations
- 2022Optical properties of an organic-inorganic hybrid film made of regenerated cellulose doped with light-scattering TiO2 particlescitations
- 2022Giant magnetoresistance response in Sr2FeMoO6 based organic spin valvescitations
- 2018Systematic Design of Printable Metasurfacescitations
- 2018Systematic Design of Printable Metasurfaces: Validation Through Reverse-offset Printed Millimeter-wave Absorberscitations
- 2016Towards printed millimeter-wave components:Material characterizationcitations
- 2016Towards printed millimeter-wave componentscitations
- 2016Towards printed millimeter-wave components: Material characterizationcitations
- 2014Nanometer to micrometer scale patterning by thermal roll to roll NIL
- 2012Roll-to-roll pilot nanoimprinting process for backlight devicescitations
- 2012IR-sintering of ink-jet printed metal-nanoparticles on papercitations
- 2011Pilot scale roll to roll nanoimprint process for backlight devices
- 2010Backlight device fabricated by roll-to-roll nanoimprinting
- 2010Rotation controlled imprinting
- 2008Towards printed electronic devices. Large-scale processing methods for conducting polyaniline
- 2008Continuous Double-Sided Roll-to-Roll Imprinting of Polymer Filmcitations
- 2008Roll-to-Roll Fabrication of Bulk Heterojunction plastic solar cells using the reverse gravure coating techniquecitations
- 2008Roll-to-roll fabrication of bulk heterojunction plastic solar cells using the reverse gravure coating techniquecitations
- 2007Continuous 2-sided roll to roll nanopatterning of a polymer filmcitations
- 2001Self-organization of nitrogen-containing polymeric supramolecules in thin filmscitations
- 2001Imprinted electrically conductive patterns from a polyaniline blendcitations
Places of action
Organizations | Location | People |
---|
document
Rotation controlled imprinting
Abstract
Nanoimprint lithography is a potential technology for fabrication of large scale integration systems and nano scale patterning has been reported in many studies. In typical thermal imprint process mold temperature is raised above glass transition temperature (Tg) of the polymer during molding, and cooled down below Tg before de-molding. Step and Stamp Imprint Lithography (SSIL) is a versatile method to pattern various substrate materials by sequential thermal imprinting. In our system, a stamp with size of fewmillimeters can be used for patterning large areas up to 200 mm. Fabrication of bendable nickel stamps for Roll-to-Roll nanoimprinting and polymer stamps for UV-nanoimprinting has been reported. New rotating head introduces ability to control X/Y positioning and angularorientation.