Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tuohioja, Tero

  • Google
  • 2
  • 5
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2011Pilot scale roll to roll nanoimprint process for backlight devicescitations
  • 2010Backlight device fabricated by roll-to-roll nanoimprintingcitations

Places of action

Chart of shared publication
Rinko, Kari
2 / 2 shared
Ahopelto, Jouni
2 / 25 shared
Haatainen, Tomi
2 / 13 shared
Mäkelä, Tapio
2 / 21 shared
Oravasaari, Jori
1 / 1 shared
Chart of publication period
2011
2010

Co-Authors (by relevance)

  • Rinko, Kari
  • Ahopelto, Jouni
  • Haatainen, Tomi
  • Mäkelä, Tapio
  • Oravasaari, Jori
OrganizationsLocationPeople

document

Backlight device fabricated by roll-to-roll nanoimprinting

  • Tuohioja, Tero
  • Rinko, Kari
  • Ahopelto, Jouni
  • Haatainen, Tomi
  • Mäkelä, Tapio
  • Oravasaari, Jori
Abstract

In the high volume manufacturing long term stability of process the parameters is essential. In this work we demonstrate the fabrication of backlight device on 50 mm wide and 95 micron thick cellulose acetate (CA) web (from Clarifoil). Optical binary grating design and Ni-mold were produced by Modines Ltd. The fabrication process for flexible Ni-master is shown e.g. in ref. The size of backlight structure is 30 mm x 60 mm consisting a blocks of 5 micron wide cavities as shown in Fig. 1. More than 500 devices was printed on CA-film in continuous roll-to-roll process. Printing speed was varied from 0.1 to 1.0 m/min when temperature was maximized at 118 oC, which is close to the glass transition temperature (125 oC) of CA film. Pressure of ca. 20 MPa was applied in the process. These parameters were optimized for continuous printing process. Higher temperatures or pressures can lead to a break of the web, which prevents continuous processing. In this process we have used a custom made nanoimprinter device.

Topics
  • impedance spectroscopy
  • glass
  • glass
  • glass transition temperature
  • cellulose