People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Birkett, Martin
Northumbria University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Precision depth-controlled isolated silver nanoparticle-doped diamond-like carbon coatings with enhanced ion release, biocompatibility, and mechanical performancecitations
- 2023Soft diamond-like carbon coatings with superior biocompatibility for medical applicationscitations
- 2023Biocompatible Ti3Au–Ag/Cu thin film coatings with enhanced mechanical and antimicrobial functionalitycitations
- 2023Biocompatible Ti3Au–Ag/Cu thin film coatings with enhanced mechanical and antimicrobial functionalitycitations
- 2022Enhanced mechanical and biocompatibility performance of Ti(1- x )Ag(x) coatings through intermetallic phase modificationcitations
- 2022Thermal activation of Ti(1-x)Au(x) thin films with enhanced hardness and biocompatibility citations
- 2022Tribological Behavior of Microalloyed Cu50Zr50 Alloy
- 2022Tribological Behavior of Microalloyed Cu50Zr50 Alloy
- 2022Mn3Ag(1-x)Cu(x)N antiperovskite thin films with ultra-low temperature coefficient of resistancecitations
- 2022Mn3Ag(1-x)Cu(x)N antiperovskite thin films with ultra-low temperature coefficient of resistancecitations
- 2022Investigating the Thermal and Mechanical Properties of Polyurethane Urea Nanocomposites for Subsea Applications
- 2022Thermal activation of Ti(1-x)Au(x) thin films with enhanced hardness and biocompatibilitycitations
- 2021Mechanical performance of biocompatible Ti-Au thin films grown on glass and Ti6Al4V substrates
- 2021Effect of noble metal (M=Ag, Au) doping concentration on mechanical and biomedical properties of Ti-M matrix thin films co-deposited by magnetron sputtering
- 2019A Numerical and Experimental Study of Adhesively-Bonded Polyethylene Pipelinescitations
- 2018Tuning the antimicrobial behaviour of Cu85Zr15 thin films in “wet” and “dry” conditions through structural modificationscitations
- 2016Mechanical behaviour of adhesively bonded polyethylene tapping teescitations
- 2016Electrical resistivity of CuAlMo thin films grown at room temperature by dc magnetron sputteringcitations
- 2016Resistor trimming geometry; past, present and futurecitations
- 2015Investigation into the Development of an Additive Manufacturing Technique for the Production of Fibre Composite Productscitations
- 2012Optimization of the deposition and annealing of CuAIMo thin film resistors
- 2008Discrete resistor technologies and potential future advancements
- 2006Effects of annealing on the electrical properties of NiCr vs AlCu thin film resistors prepared by DC magnetron sputtering
Places of action
Organizations | Location | People |
---|
booksection
Optimization of the deposition and annealing of CuAIMo thin film resistors
Abstract
This paper studies the effect of varying deposition and annealing process parameters on the electrical performance and structural properties of a novel CuAlMo thin film resistor material. The design of experiments (DOE) and analysis of variance (ANOVA) methods were utilized to determine the optimum process conditions for the films which were prepared using DC magnetron sputtering before being annealed in air ambient. Films of low sheet resistance with near zero temperature coefficient of resistance (TCR) and good long term stability were obtained at a high deposition rate and low sputtering pressure. Subsequent annealing of the films in air resulted in further crystallization with grain growth and stress relief which gave an increase in conductivity and TCR. In addition to the deposition parameters, the stability of the film was also shown to improve with increasing heat treatment time and temperature.