People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Giagka, Vasiliki
Fraunhofer Institute for Reliability and Microintegration
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2023Non-monolithic fabrication of thin-film microelectrode arrays on PMUT transducers as a bimodal neuroscientific investigation toolcitations
- 2023Non-monolithic fabrication of thin-film microelectrode arrays on PMUT transducers as a bimodal neuroscientific investigation toolcitations
- 2023A Comparative Study of Si3N4 and Al2O3 as Dielectric Materials for Pre-Charged Collapse-Mode CMUTscitations
- 2023An Ultrasonically Powered System Using an AlN PMUT Receiver for Delivering Instantaneous mW-Range DC Power to Biomedical Implantscitations
- 2022Thin Film Encapsulation for LCP-Based Flexible Bioelectronic Implants: Comparison of Different Coating Materials Using Test Methodologies for Life-Time Estimationcitations
- 2022Thin Film Encapsulation for LCP-Based Flexible Bioelectronic Implants: Comparison of Different Coating Materials Using Test Methodologies for Life-Time Estimationcitations
- 2022Multilayer CVD graphene electrodes using a transfer-free process for the next generation of optically transparent and MRI-compatible neural interfacescitations
- 2022Multilayer CVD graphene electrodes using a transfer-free process for the next generation of optically transparent and MRI-compatible neural interfacescitations
- 2022Thin Film Encapsulation for LCP-Based Flexible Bioelectronic Implantscitations
- 2021Silicone encapsulation of thin-film SiOx , SiOx Ny and SiC for modern electronic medical implantscitations
- 2021Silicone encapsulation of thin-film SiO x , SiO x N y and SiC for modern electronic medical implants: A comparative long-term ageing studycitations
- 2021Silicone encapsulation of thin-film SiOx, SiOxNy and SiC for modern electronic medical implants: a comparative long-term ageing studycitations
- 2021Silicone encapsulation of thin-film SiOx, SiOxNy and SiC for modern electronic medical implants
- 2020Soft, flexible and transparent graphene-based active spinal cord implants for optogenetic studies
- 2020Long-term encapsulation of platinum metallization using a HfO2 ALD - PDMS bilayer for non-hermetic active implantscitations
- 2019Effect of Signals on the Encapsulation Performance of Parylene Coated Platinum Tracks for Active Medical Implantscitations
- 2019The influence of soft encapsulation materials on the wireless power transfer links efficiency
- 2019Towards an Active Graphene-PDMS Implant
- 2018MEMS-Electronics Integration 2: A Smart Temperature Sensor for an Organ-on-a-chip Platform
- 2015Flexible active electrode arrays with ASICs that fit inside the rat's spinal canalcitations
Places of action
Organizations | Location | People |
---|
document
Soft, flexible and transparent graphene-based active spinal cord implants for optogenetic studies
Abstract
Patients affected by spinal cord injuries (SCI) are usually unable to perform trivial motor activities and thus, for therapeutic purposes, epidural spinal cord stimulation (ESCS) is currently used. Moreover, more exploratory research, using optogenetics, is being conducted in rodents for a better understanding of the mechanisms that occur while delivering specific therapies. However, the availability of tailored neurotechnologies for such experiments is limited.This work reports the development and characterization of flexible, active spinal cord implants with optogenetic compatibility1,2 (Fig.1). A scalable and reproducible microfabrication process has been developed, using graphene3, a transparent, flexible and conductive material, to form the electrodes and interconnects of the implant. Small and thin4 electronic chips were assembled via flip-chip bonding processes either on graphene or on metal-on-graphene layers. Soft, polymeric encapsulation was employed to sustain the high flexibility and transparency of the implant. The result is an active prototype consisting of a multi-layered graphene structure between two polymeric-based encapsulation layers, with thin chips integrated on the implant and test pads for interconnection to the outside world.Raman spectroscopy and optical transmittance were employed for the characterization of the graphene layer while cyclic voltammetry and electrochemical impedance spectroscopy were performed to benchmark the electrical properties of the device. The assembly process of the chips was evaluated using four-point electrical measurements.In this work, the first transparent, graphene-based active implants have been developed (Fig. 2 and Fig. 3). The prototypes were extensively characterized and the results showed a transparency of ~80 % as well as no deterioration over time when soaked in saline solution or when bent under various angles. The graphene electrodes showed an impedance of ~8 kΩ at 1 kHz frequencies and the resistance after the bonding process ranged from 10 mΩ up to 16 Ω for individual connections, depending on the substrate used