People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Maljaars, Johan
Eindhoven University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2024Fatigue behaviour of root crack in stiffener-to-deck plate weld at crossbeam of orthotropic bridge deckscitations
- 2024Fatigue behaviour of root crack in stiffener-to-deck plate weld at crossbeam of orthotropic bridge deckscitations
- 2024Numerical simulations of residual stress formation and its effect on fatigue crack propagation in a fillet welded T-jointcitations
- 2024A two-scale approach for assessing the role of defects in fatigue crack nucleation in metallic structurescitations
- 2024Prediction of fatigue crack paths including crack-face friction for an inclined edge crack subjected to mixed mode loadingcitations
- 2024Experimental evaluation of the fatigue notch factor in as-built specimens produced by Wire and Arc Additive Manufacturingcitations
- 2024Pyrolysis modelling of insulation material in coupled fire-structure simulationscitations
- 2023A pyrolysis model for steel-insulation sandwich building façade systems under firecitations
- 2022Safety assessment for capacity design of bolted steel connections in tensioncitations
- 2022Uncertainty quantification of the failure assessment diagram for flawed steel components in BS 7910:2019citations
- 2021Fracture mechanics based fatigue life prediction for a weld toe crack under constant and variable amplitude random block loading—Modeling and uncertainty estimationcitations
- 2021A cohesive XFEM model for simulating fatigue crack growth under various load conditionscitations
- 2020Preload loss of stainless steel bolts in aluminium plated slip resistant connectionscitations
- 2020Preload loss of stainless steel bolts in aluminium plated slip resistant connectionscitations
- 2020Rivet clamping force of as-built hot-riveted connections in steel bridgescitations
- 2020Influence of material anisotropy on fatigue crack growth in C–Mn steels of existing structurescitations
- 2019Simplified constraint-modified failure assessment procedure for structural components containing defects
- 2019Added value of regular in-service visual inspection to the fatigue reliability of structural details in steel bridges
- 2018Use of HSS and VHSS in steel structures in civil and offshore engineeringcitations
- 2017Compatibility of S-N and crack growth curves in the fatigue reliability assessment of a welded steel joint
- 2017Bending-shear interaction of steel I-shaped cross-sections
- 2016The effect of low temperatures on the fatigue crack growth of S460 structural steelcitations
- 2016Fire exposed steel columns with a thermal gradient over the cross-sectioncitations
- 2016Numerical investigation into strong axis bending-shear interaction in rolled I-shaped steel sections
- 2016Fatigue partial factors for bridges
- 2014Failure and fatigue life assessment of steel railway bridges with brittle material
Places of action
Organizations | Location | People |
---|
document
Added value of regular in-service visual inspection to the fatigue reliability of structural details in steel bridges
Abstract
In order to design structural details of bridges for fatigue, the current version of the Eurocode for steel structures recommends partial factors for fatigue resistance based on the consequences of failure and on the maintenance method. The safe-life method is used for details where local formation of cracks could rapidly lead to failure or for details not accessible for inspection and has a relatively high partial factor. The damage tolerant method, on the other hand, is used for cases where fatigue crack initiation does not result in immediate failure so inspection and repair can be performed. In the current Eurocode, this comes with a relatively low partial factor. However, since the probability of crack detection of visual inspection by the naked eye is considerably different from more detailed inspection methods, the required partial factor to design a bridge for fatigue should be based on the way and level of inspection planned during the bridge service life. As a common practice, for most bridges, only visual inspections in short time intervals are carried out. In this paper, the added value of periodic visual inspection on the reliability status of a steel railway bridge is studied. The probability of failure after performing visual inspection is investigated by two approaches: 1) A statistical study on the main causes of bridge failure carried out by other researchers to find the relation between the safe-life design method and the design method considering visual inspection; 2) Conducting a survey to collect experts opinions on the matter and using a Bayesian algorithm to assign a probability distribution function to each opinion. A relation between reliability indices for the cases where a bridge is designed with and without considering the in-service visual inspection, is derived.